Home
Class 12
MATHS
If g(x)=x^(2)+x+x-1 and g(f(x))=4x^(2)-1...

If `g(x)=x^(2)+x+x-1 and g(f(x))=4x^(2)-10x+5` then find `f((5)/(4))`

A

`(1)/(2)`

B

`-(1)/(2)`

C

`-(1)/(3)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given functions: 1. \( g(x) = x^2 + x - 1 \) 2. \( g(f(x)) = 4x^2 - 10x + 5 \) We need to find \( f\left(\frac{5}{4}\right) \). ### Step 1: Set up the equation for \( g(f(x)) \) From the definition of \( g(x) \), we can express \( g(f(x)) \) as follows: \[ g(f(x)) = f(x)^2 + f(x) - 1 \] ### Step 2: Equate the two expressions for \( g(f(x)) \) We know that: \[ g(f(x)) = 4x^2 - 10x + 5 \] Thus, we can set the two expressions equal to each other: \[ f(x)^2 + f(x) - 1 = 4x^2 - 10x + 5 \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ f(x)^2 + f(x) - (4x^2 - 10x + 6) = 0 \] This is a quadratic equation in terms of \( f(x) \): \[ f(x)^2 + f(x) - 4x^2 + 10x - 6 = 0 \] ### Step 4: Use the quadratic formula We can solve for \( f(x) \) using the quadratic formula: \[ f(x) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 1 \), and \( c = -(4x^2 - 10x + 6) \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot (-(4x^2 - 10x + 6)) = 1 + 16x^2 - 40x + 24 \] \[ = 16x^2 - 40x + 25 \] ### Step 5: Substitute back into the quadratic formula Now substituting back into the formula: \[ f(x) = \frac{-1 \pm \sqrt{16x^2 - 40x + 25}}{2} \] ### Step 6: Evaluate \( f\left(\frac{5}{4}\right) \) Now we need to find \( f\left(\frac{5}{4}\right) \): First, substitute \( x = \frac{5}{4} \): \[ f\left(\frac{5}{4}\right) = \frac{-1 \pm \sqrt{16\left(\frac{5}{4}\right)^2 - 40\left(\frac{5}{4}\right) + 25}}{2} \] Calculating \( 16\left(\frac{5}{4}\right)^2 \): \[ 16 \cdot \frac{25}{16} = 25 \] Calculating \( -40\left(\frac{5}{4}\right) \): \[ -40 \cdot \frac{5}{4} = -50 \] Now substituting these values into the discriminant: \[ f\left(\frac{5}{4}\right) = \frac{-1 \pm \sqrt{25 - 50 + 25}}{2} \] \[ = \frac{-1 \pm \sqrt{0}}{2} \] \[ = \frac{-1}{2} \] ### Final Answer Thus, we find: \[ f\left(\frac{5}{4}\right) = -\frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|125 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATH|25 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos

Similar Questions

Explore conceptually related problems

If g(x)=x^(2)+x-1 and (gof)(x)=4x^(2)-10x+5, then f((5)/(4)) is equal to:

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

If g(x)=x^(2)+x-2 and (1)/(2)g(f(x))=2x^(2)-5x+2, then f(x) is

Suppose f,g, R to R . If g(x) defined by g(x) = x^(2) + x-2 and (g.f)(x) =4x^(2) - 10 x + 4 , then f(x) may be given by

If f(x)=x^(3) and g(x)=x^(2)//5 , then f(x)-g(x) will be

(a) If f(x)=x+2 and g(x+1)=x+1 then find g@f(4)

If f(x) = -2x +7 and g(x)=x^(2)-5x +6 find f(3), f(-4), g(2) and g(-1) .

Let f:R rarr R be defined as f(x)=x^(3)+3x^(2)+6x-5+4e^(2x) and g(x)=f^(-1)(x) ,then find g'(-1)