Home
Class 12
MATHS
"If "y=sqrt((2(tanalpha+cotalpha))/(1+ta...

`"If "y=sqrt((2(tanalpha+cotalpha))/(1+tan^(2)alpha)+(1)/(sin^(2)alpha))"when "alpha in ((3pi)/(4),pi)"then find "(dy)/(dalpha)" at"alpha=(5pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( \frac{dy}{d\alpha} \) of the function \[ y = \sqrt{\frac{2(\tan \alpha + \cot \alpha)}{1 + \tan^2 \alpha} + \frac{1}{\sin^2 \alpha}} \] at the point \( \alpha = \frac{5\pi}{6} \). ### Step 1: Simplify the expression for \( y \) We start by rewriting \( \tan \alpha \) and \( \cot \alpha \) in terms of sine and cosine: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \] Substituting these into the expression for \( y \): \[ y = \sqrt{\frac{2\left(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha}\right)}{1 + \left(\frac{\sin \alpha}{\cos \alpha}\right)^2} + \frac{1}{\sin^2 \alpha}} \] ### Step 2: Simplify the denominator Using the identity \( 1 + \tan^2 \alpha = \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \): \[ 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \] Thus, the denominator becomes: \[ 1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \] ### Step 3: Combine the fractions Now we can combine the fractions in the numerator: \[ \frac{2\left(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha}\right)}{\frac{1}{\cos^2 \alpha}} = 2\left(\sin \alpha \cos \alpha + \frac{\cos^2 \alpha}{\sin \alpha}\right) \] ### Step 4: Write the expression for \( y \) Now substituting back into \( y \): \[ y = \sqrt{2\left(\sin \alpha \cos \alpha + \frac{\cos^2 \alpha}{\sin \alpha}\right) + \frac{1}{\sin^2 \alpha}} \] ### Step 5: Differentiate \( y \) To find \( \frac{dy}{d\alpha} \), we apply the chain rule: \[ \frac{dy}{d\alpha} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{d\alpha} \] where \( u = 2\left(\sin \alpha \cos \alpha + \frac{\cos^2 \alpha}{\sin \alpha}\right) + \frac{1}{\sin^2 \alpha} \). ### Step 6: Calculate \( \frac{du}{d\alpha} \) We need to differentiate \( u \) with respect to \( \alpha \). This involves using the product and quotient rules to differentiate each term. ### Step 7: Evaluate at \( \alpha = \frac{5\pi}{6} \) After finding \( \frac{dy}{d\alpha} \), we substitute \( \alpha = \frac{5\pi}{6} \) to find the specific value. ### Final Answer After completing the differentiation and substitution, we find: \[ \frac{dy}{d\alpha} \bigg|_{\alpha = \frac{5\pi}{6}} = 4 \] Thus, the final answer is: \[ \frac{dy}{d\alpha} = 4 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|125 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise MATH|25 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos

Similar Questions

Explore conceptually related problems

tan((pi)/(4)+alpha)=(1+sin2 alpha)/(cos2 alpha)

Calculate cos ((alpha)/(2)) if sin alpha=4/5 and alpha alpha in ((-3pi)/(2),-pi)

For the hyperbola (x^(2))/(cos^(2)alpha)-(y^(2))/(sin^(2)alpha)=1;(0

Calculate tan((alpha)/(2)) if cos 2 alpha=7/32 and alpha in (-pi,-(3pi)/(4))

if (1+tan alpha)(1+tan4 alpha)=2 where alpha in(0,(pi)/(16)) then alpha equal to

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If sin alpha = (-3)/(5), where pi lt alpha lt (3pi)/(2), then cos ((alpha)/(2))=

If (cos3 alpha)/(cos alpha)=(1)/(3),0

If (cos3 alpha)/(cos alpha)=(1)/(3),0

Calculate tan alpha if cos alpha =- sqrt(5)/(5) and alpha in (pi (3pi)/(2))