Home
Class 11
MATHS
Find the coordinates of the centroid of...

Find the coordinates of the centroid of the triangle whose vertices are `(x_1,y_1,z_1)`, `(x_2,y_2,z_2)`and `(x_3,y_3,z_3)`.

Text Solution

AI Generated Solution

To find the coordinates of the centroid of a triangle whose vertices are given as \((x_1, y_1, z_1)\), \((x_2, y_2, z_2)\), and \((x_3, y_3, z_3)\), we can follow these steps: ### Step 1: Understand the Concept of Centroid The centroid of a triangle in three-dimensional space is the point where the three medians of the triangle intersect. It can be calculated as the average of the coordinates of the vertices. ### Step 2: Write the Formula for the Centroid The coordinates of the centroid \(G\) can be calculated using the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.2|5 Videos
  • CONIC SECTIONS

    NCERT|Exercise EXERCISE 11.1|15 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.3|8 Videos

Similar Questions

Explore conceptually related problems

Find the coordinates of the centroid of a triangle having vertices P(x_1,y_1,z_1),Q(x_2,y_2,z_2) and R(x_3,y_3,z_3)

Show that the coordinates off the centroid of the triangle with vertices A(x_(1),y_(1),z_(1)),B(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3)) are ((x_(1)+x_(2)+x_(3))/(3),(y_(1)+y_(2)+y_(3))/(3),(z_(1)+z_(2)+z_(3))/(3))

Find the co oridinate of the centroid of the tetrahedron whose vertices are (x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)),(x_(3),y_(3),z_(3)) and (x_(4),y_(4),z_(4))

Theorem: Prove that the coordinates of centroid of the triangle whose coordinates are (x_(1);y_(1));(x_(2);y_(2)) and (x_(3);y_(3)) are ((x_(1)+x_(2)+x_(3))/(3);(y_(1)+y_(2)+y_(3))/(3))

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

Theorem : The area of a triangle the coordinates of whose vertices are (x_1;y_1);(x_2;y_2)and (x_3;y_3) is 1/2|(x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|

A tetrahedron is a three dimensional figure bounded by four non coplanar triangular plane.So a tetrahedron has four no coplnar points as its vertices. Suppose a tetrahedron has points A,B,C,D as its vertices which have coordinates (x_1,y_1,z_1)(x_2,y_2,z_2),(x_3,y_3,z_3) and (x_4,y_4,z_4) respectively in a rectangular three dimensional space. Then the coordinates of its centroid are ((x_1+x_2+x_3+x_3+x_4)/4, (y_1+y_2+y_3+y_3+y_4)/4, (z_1+z_2+z_3+z_3+z_4)/4) . the circumcentre of the tetrahedron is the center of a sphere passing through its vertices. So, this is a point equidistant from each of the vertices of the tetrahedron. Let a tetrahedron have three of its vertices represented by the points (0,0,0) ,(6,-5,-1) and (-4,1,3) and its centroid lies at the point (1,2,5). The coordinate of the fourth vertex of the tetrahedron is

A plane meets the coordinate axes at P, Q and R such that the centroid of the triangle is (3,3,3). The equation of he plane is (A) x+y+z=9 (B) x+y+z=1 (C) x+y+z=3 (D) 3x+3y+3z=1

Let x_1y_1z_1,x_2y_2z_2 and x_3y_3z_3 be three 3-digit even numbers and Delta=|{:(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3):}| . then Delta is