Home
Class 12
MATHS
If 7 sin^(2) theta + 3 cos^(2) theta =4...

If ` 7 sin^(2) theta + 3 cos^(2) theta =4 , "then" sec theta + cosec theta ` is equal to

A

`2/sqrt3-2`

B

`2/sqrt3+ 2`

C

`2/sqrt3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 7 \sin^2 \theta + 3 \cos^2 \theta = 4 \) and find the value of \( \sec \theta + \csc \theta \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \cos^2 \theta = 1 - \sin^2 \theta \). Substitute this into the equation: \[ 7 \sin^2 \theta + 3 (1 - \sin^2 \theta) = 4 \] ### Step 2: Simplify the equation Distributing the 3 gives: \[ 7 \sin^2 \theta + 3 - 3 \sin^2 \theta = 4 \] Combine like terms: \[ (7 - 3) \sin^2 \theta + 3 = 4 \] This simplifies to: \[ 4 \sin^2 \theta + 3 = 4 \] ### Step 3: Isolate \( \sin^2 \theta \) Subtract 3 from both sides: \[ 4 \sin^2 \theta = 1 \] Now divide by 4: \[ \sin^2 \theta = \frac{1}{4} \] ### Step 4: Find \( \sin \theta \) Taking the square root of both sides gives: \[ \sin \theta = \frac{1}{2} \] ### Step 5: Determine \( \theta \) The angle \( \theta \) for which \( \sin \theta = \frac{1}{2} \) is: \[ \theta = 30^\circ \quad \text{or} \quad \theta = 150^\circ \] ### Step 6: Calculate \( \sec \theta \) and \( \csc \theta \) Now, we need to find \( \sec \theta \) and \( \csc \theta \): 1. \( \sec \theta = \frac{1}{\cos \theta} \) 2. \( \csc \theta = \frac{1}{\sin \theta} \) First, find \( \cos \theta \) when \( \sin \theta = \frac{1}{2} \): \[ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] Now calculate \( \sec \theta \) and \( \csc \theta \): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{1}{2}} = 2 \] ### Step 7: Add \( \sec \theta \) and \( \csc \theta \) Now, we can find \( \sec \theta + \csc \theta \): \[ \sec \theta + \csc \theta = \frac{2}{\sqrt{3}} + 2 \] ### Final Step: Combine the terms To combine these terms, we can express \( 2 \) with a common denominator: \[ \sec \theta + \csc \theta = \frac{2}{\sqrt{3}} + \frac{2\sqrt{3}}{\sqrt{3}} = \frac{2 + 2\sqrt{3}}{\sqrt{3}} \] Thus, the final answer is: \[ \sec \theta + \csc \theta = \frac{2 + 2\sqrt{3}}{\sqrt{3}} \]

To solve the equation \( 7 \sin^2 \theta + 3 \cos^2 \theta = 4 \) and find the value of \( \sec \theta + \csc \theta \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \cos^2 \theta = 1 - \sin^2 \theta \). Substitute this into the equation: \[ 7 \sin^2 \theta + 3 (1 - \sin^2 \theta) = 4 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 Trigonomertric Ratio of Allied Angle|18 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If 7 sin^2theta + 3 cos^2theta= 4 then sec theta + cosec theta is equal to:

If tan^2 theta =(1-e^2) , then sec theta+tan^3 theta "cosec" theta is equal to

If 7sin^(2)theta+3cos^(2)theta=4 ,then prove that sec theta+cosec theta=2+(2)/(sqrt(3))

If sin theta + cosec theta = 2 , then the value of sin^7theta + cosec^7 theta is

The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

If sec theta = (13)/(5) then (2 sin theta - 3 cos theta )/( 4 sin theta - 9 cos theta) is equal to

What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + cosec theta) equal to ?

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If 7 sin^(2) theta + 3 cos^(2) theta =4 , "then" sec theta + cosec th...

    Text Solution

    |

  2. If cosec theta =x + 1/(4x) then the value of cosec theta + cot theta...

    Text Solution

    |

  3. If DeltaABC right angle at B, BC = 5 cm and AC -AB =1 cm. then (1 ...

    Text Solution

    |

  4. If tan theta + cot theta =2, " then " tan^(2) theta + cot^(2) theta i...

    Text Solution

    |

  5. If cos (81^(@) + theta) = sin(k/3 - theta) , then k is equal to

    Text Solution

    |

  6. If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2)...

    Text Solution

    |

  7. If tan x = sin45^(@) cos 45^(@) + sin 30^(@) then x is equal to

    Text Solution

    |

  8. sin^(6) theta + cos^(6) theta is equal to

    Text Solution

    |

  9. cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos...

    Text Solution

    |

  10. (sin(90^(@) -theta)sin theta)/(tan theta) + sin^(2) theta is equal to

    Text Solution

    |

  11. If tantheta=(20)/(21) , show that (1-sintheta+costheta)/(1+sintheta...

    Text Solution

    |

  12. For 0 le theta le pi/2 the maximum value of sin theta + cos theta i...

    Text Solution

    |

  13. (cos 70^(@))/(sin 20^(@)) + (cos 59^(@))/(sin 31^(@) ) - 8 sin^(2) 30^...

    Text Solution

    |

  14. If sin theta = 1/2 and theta is acute then (3 cos theta -4 cos^(3) ...

    Text Solution

    |

  15. If 3 sin theta + 4 cos theta =5 , then value of sin theta is

    Text Solution

    |

  16. If theta "is theta " and (cos^(2)theta)/(cot^(2) theta -cos^(2) theta)...

    Text Solution

    |

  17. The value of (1+cos (pi/6))(1+cos(pi/3))(1+cos ((2pi)/3))(1+cos((7pi...

    Text Solution

    |

  18. If cos 20^(@) - sin 20^(@) =p " then " cos 40^(@) is equal to

    Text Solution

    |

  19. If Sn=cos^ntheta+sin^n tehta then find teh value of 3S4-2S6

    Text Solution

    |

  20. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  21. If x sin^3theta+ycos^3theta=sinthetacostheta and xsintheta=ycostheta ...

    Text Solution

    |