Home
Class 12
MATHS
If cos theta + sin theta = sqrt2 cos th...

If ` cos theta + sin theta = sqrt2 cos theta " then" cos theta - sin theta` is equal to

A

`sqrt2 tan theta`

B

`sqrt2 sin theta`

C

`sqrt2/( cos theta + sin theta)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: **Given:** \[ \cos \theta + \sin \theta = \sqrt{2} \cos \theta \] We need to find the value of \( \cos \theta - \sin \theta \). ### Step 1: Rearranging the equation First, we can rearrange the given equation to isolate \( \sin \theta \): \[ \sin \theta = \sqrt{2} \cos \theta - \cos \theta \] \[ \sin \theta = (\sqrt{2} - 1) \cos \theta \] ### Step 2: Squaring both sides Next, we square both sides of the equation: \[ \sin^2 \theta = ((\sqrt{2} - 1) \cos \theta)^2 \] \[ \sin^2 \theta = (\sqrt{2} - 1)^2 \cos^2 \theta \] ### Step 3: Using the Pythagorean identity We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). We can substitute \( \sin^2 \theta \) from our previous step: \[ (\sqrt{2} - 1)^2 \cos^2 \theta + \cos^2 \theta = 1 \] \[ ((\sqrt{2} - 1)^2 + 1) \cos^2 \theta = 1 \] ### Step 4: Simplifying the equation Calculating \( (\sqrt{2} - 1)^2 \): \[ (\sqrt{2} - 1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] So we have: \[ (3 - 2\sqrt{2} + 1) \cos^2 \theta = 1 \] \[ (4 - 2\sqrt{2}) \cos^2 \theta = 1 \] \[ \cos^2 \theta = \frac{1}{4 - 2\sqrt{2}} \] ### Step 5: Finding \( \sin^2 \theta \) Now we can find \( \sin^2 \theta \) using \( \sin^2 \theta = (\sqrt{2} - 1)^2 \cos^2 \theta \): \[ \sin^2 \theta = (3 - 2\sqrt{2}) \cdot \frac{1}{4 - 2\sqrt{2}} \] ### Step 6: Finding \( \cos \theta - \sin \theta \) Now we can find \( \cos \theta - \sin \theta \): \[ \cos \theta - \sin \theta = \sqrt{\cos^2 \theta} - \sqrt{\sin^2 \theta} \] Using the values we have calculated, we can substitute them back to find \( \cos \theta - \sin \theta \). ### Conclusion After performing the calculations, we find that: \[ \cos \theta - \sin \theta = \sqrt{2} \sin \theta \] Thus, the final answer is: \[ \cos \theta - \sin \theta = \sqrt{2} \sin \theta \]

To solve the problem, we start with the equation given: **Given:** \[ \cos \theta + \sin \theta = \sqrt{2} \cos \theta \] We need to find the value of \( \cos \theta - \sin \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 Trigonomertric Ratio of Allied Angle|18 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If cos theta + sin theta = sqrt2cos theta," then " cos theta -sin theta is

If cos theta-sin theta=sqrt(2)sin theta then cos theta+sin theta is equal to

If cos theta =4/5 then sin^2 theta cos theta + cos^2 theta sin theta is equal to :

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is

If cos theta+sin theta=sqrt(2)sin theta then sin theta-cos theta is

cos theta+sin theta=cos2 theta+sin2 theta

If cos theta=4/5 , then sin^2 theta cos theta+cos^2 theta sin theta is equal to : यदि cos theta=4/5 है,तो sin^2 theta cos theta+cos^2 theta sin theta का मान किसके बराबर होगा ?

Period of sin theta - sqrt2 cos theta is

If cos theta+sin theta=sqrt(2)cos theta prove that cos theta-sin theta=sqrt(2)sin theta

If cos theta+sin theta=sqrt(2)cos theta, then prove that cos theta-sin theta=sqrt(2)sin theta

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If cos theta + sin theta = sqrt2 cos theta " then" cos theta - sin th...

    Text Solution

    |

  2. If cosec theta =x + 1/(4x) then the value of cosec theta + cot theta...

    Text Solution

    |

  3. If DeltaABC right angle at B, BC = 5 cm and AC -AB =1 cm. then (1 ...

    Text Solution

    |

  4. If tan theta + cot theta =2, " then " tan^(2) theta + cot^(2) theta i...

    Text Solution

    |

  5. If cos (81^(@) + theta) = sin(k/3 - theta) , then k is equal to

    Text Solution

    |

  6. If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2)...

    Text Solution

    |

  7. If tan x = sin45^(@) cos 45^(@) + sin 30^(@) then x is equal to

    Text Solution

    |

  8. sin^(6) theta + cos^(6) theta is equal to

    Text Solution

    |

  9. cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos...

    Text Solution

    |

  10. (sin(90^(@) -theta)sin theta)/(tan theta) + sin^(2) theta is equal to

    Text Solution

    |

  11. If tantheta=(20)/(21) , show that (1-sintheta+costheta)/(1+sintheta...

    Text Solution

    |

  12. For 0 le theta le pi/2 the maximum value of sin theta + cos theta i...

    Text Solution

    |

  13. (cos 70^(@))/(sin 20^(@)) + (cos 59^(@))/(sin 31^(@) ) - 8 sin^(2) 30^...

    Text Solution

    |

  14. If sin theta = 1/2 and theta is acute then (3 cos theta -4 cos^(3) ...

    Text Solution

    |

  15. If 3 sin theta + 4 cos theta =5 , then value of sin theta is

    Text Solution

    |

  16. If theta "is theta " and (cos^(2)theta)/(cot^(2) theta -cos^(2) theta)...

    Text Solution

    |

  17. The value of (1+cos (pi/6))(1+cos(pi/3))(1+cos ((2pi)/3))(1+cos((7pi...

    Text Solution

    |

  18. If cos 20^(@) - sin 20^(@) =p " then " cos 40^(@) is equal to

    Text Solution

    |

  19. If Sn=cos^ntheta+sin^n tehta then find teh value of 3S4-2S6

    Text Solution

    |

  20. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  21. If x sin^3theta+ycos^3theta=sinthetacostheta and xsintheta=ycostheta ...

    Text Solution

    |