Home
Class 12
MATHS
If cos theta = - sqrt3/2 and sin prop =...

If ` cos theta = - sqrt3/2 and sin prop = - 3/5, " where " theta` does not lie and `prop` lies in the third quadrant, then ` (2 tan prop + sqrt3 tan theta)/(cot^(2) theta + cos prop)` is equal to

A

`7/22`

B

`5/22`

C

`9/22`

D

`22/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{2 \tan \delta + \sqrt{3} \tan \theta}{\cot^2 \theta + \cos \delta} \] Given: - \(\cos \theta = -\frac{\sqrt{3}}{2}\) - \(\sin \delta = -\frac{3}{5}\) ### Step 1: Determine \(\theta\) and \(\delta\) Since \(\cos \theta = -\frac{\sqrt{3}}{2}\), \(\theta\) must lie in the second quadrant (as it cannot lie in the third quadrant). ### Step 2: Find \(\sin \theta\) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\cos^2 \theta\): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{2}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{3}{4} = 1 \] \[ \sin^2 \theta = 1 - \frac{3}{4} = \frac{1}{4} \] Thus, \(\sin \theta = \frac{1}{2}\) (since \(\theta\) is in the second quadrant). ### Step 3: Find \(\tan \theta\) Now, we can find \(\tan \theta\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} \] ### Step 4: Determine \(\delta\) Since \(\sin \delta = -\frac{3}{5}\) and \(\delta\) lies in the third quadrant, we can find \(\cos \delta\) using the Pythagorean identity: \[ \sin^2 \delta + \cos^2 \delta = 1 \] \[ \left(-\frac{3}{5}\right)^2 + \cos^2 \delta = 1 \] \[ \frac{9}{25} + \cos^2 \delta = 1 \] \[ \cos^2 \delta = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \(\cos \delta = -\frac{4}{5}\) (since \(\delta\) is in the third quadrant). ### Step 5: Find \(\tan \delta\) Now, we can find \(\tan \delta\): \[ \tan \delta = \frac{\sin \delta}{\cos \delta} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{4} \] ### Step 6: Substitute into the expression Now we substitute \(\tan \theta\) and \(\tan \delta\) into the expression: \[ 2 \tan \delta + \sqrt{3} \tan \theta = 2 \cdot \frac{3}{4} + \sqrt{3} \cdot \left(-\frac{1}{\sqrt{3}}\right) \] \[ = \frac{3}{2} - 1 = \frac{1}{2} \] Next, we calculate the denominator: \[ \cot^2 \theta = \frac{1}{\tan^2 \theta} = \frac{1}{\left(-\frac{1}{\sqrt{3}}\right)^2} = 3 \] Thus, \[ \cot^2 \theta + \cos \delta = 3 - \frac{4}{5} = 3 - 0.8 = 2.2 = \frac{11}{5} \] ### Step 7: Final calculation Now we can substitute back into the expression: \[ \frac{\frac{1}{2}}{\frac{11}{5}} = \frac{1}{2} \cdot \frac{5}{11} = \frac{5}{22} \] ### Final Answer Thus, the value of the expression is: \[ \frac{5}{22} \]

To solve the problem, we need to evaluate the expression: \[ \frac{2 \tan \delta + \sqrt{3} \tan \theta}{\cot^2 \theta + \cos \delta} \] Given: - \(\cos \theta = -\frac{\sqrt{3}}{2}\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If tan theta=3 and theta lies in third quadrant then sin theta=

If tan theta=3 and theta lies in third quadrant then sin theta=

If sin theta = - (3)/(5) and theta lies in the third quadrant, then the value of cos (theta//2) is

If cot theta =(5)/(12) and theta lies in the third quadrant, then what is (2 sin theta + 3cos theta ) equal to?

If sin theta = 3/5 , then the value of (tan theta + cos theta)/(cot theta + cosec theta) is equal to

Find sin theta and tan theta if cos theta =-3/5 and theta lies in the third quadrant.

If theta in the first quadrant and 5 tan theta =4 " then " ( 5 sin theta - 3 sin theta)/( sin theta + 2 cos theta) is equal to

If sin theta = -1/2 and cos theta = (sqrt3)/(2), then theta lies in

If tan theta=4 then ((tan theta)/((sin^(3)theta)/(cos theta)+sin theta cos theta)) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS -EXERCISE 1 Trigonomertric Ratio of Allied Angle
  1. If sin alpha and cos alpha are roots of the equation px^2 + qx+r=0 th...

    Text Solution

    |

  2. The value of 2 cot^(2) (pi//6) + 4 tan^(2)(pi//6) -3 cosec (pi//6) is

    Text Solution

    |

  3. Find the value of 1 cos(29pi//3)

    Text Solution

    |

  4. If (cos A)/3= (cos B)/4= 1/5, - pi/2 lt A lt 0 and - pi/2 lt B lt 0 t...

    Text Solution

    |

  5. The value of (cot 54^(@))/(tan 36^(@)) + (tan 20^(@))/(cot 70^(@)) is

    Text Solution

    |

  6. The value of cos 480^(@) sin 150^(@) + sin 600^(@) cos 390^(@) is

    Text Solution

    |

  7. Find the value of cos^2pi/(16)+cos^2(3pi)/(16)+cos^2(5pi)/(16)+cos^2(7...

    Text Solution

    |

  8. sin^2 17. 5^(@)+sin^2 72. 5^(@) is equal to

    Text Solution

    |

  9. If cos theta = - sqrt3/2 and sin prop = - 3/5, " where " theta does n...

    Text Solution

    |

  10. If tan theta = 1/sqrt7 " then" ((cosec^(2) theta -sec^(2) theta))/((c...

    Text Solution

    |

  11. cos 1^(@) + cos2^(@) + cos 3^(@) + ….+cos 180^(@) is equal to

    Text Solution

    |

  12. If DeltaABC " if" angleA = pi/2 " then" cos^(2)B + cos^(2) C equals

    Text Solution

    |

  13. If DeltaABC is a right angled at C, then tan A + tan B is equal to

    Text Solution

    |

  14. If sin A-sqrt6 cos A = sqrt7 cos A , " then " cos A + sqrt6 sin A i...

    Text Solution

    |

  15. If sin A + sin B + sin C = 3, then cos A + cos B + cos C is equal to

    Text Solution

    |

  16. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  17. The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) ...

    Text Solution

    |

  18. The value of the expression cos 1^(@) cos 2^(@) …. Cos 179^(@) is

    Text Solution

    |