Home
Class 12
MATHS
If sin theta = 1/2 and theta is acute ...

If ` sin theta = 1/2 and theta ` is acute then ` (3 cos theta -4 cos^(3) theta)` is equal to

A

0

B

`1/2`

C

`1/6`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Identify the value of theta**: We know that \( \sin \theta = \frac{1}{2} \) and that \( \theta \) is acute. The sine function equals \( \frac{1}{2} \) at \( 30^\circ \) (or \( \frac{\pi}{6} \) radians). 2. **Calculate cos theta**: Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \cos \theta \): \[ \sin^2 \theta = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{1}{4} = \frac{3}{4} \] \[ \cos \theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] 3. **Substitute cos theta into the expression**: We need to evaluate \( 3 \cos \theta - 4 \cos^3 \theta \): \[ 3 \cos \theta - 4 \cos^3 \theta = 3 \left(\frac{\sqrt{3}}{2}\right) - 4 \left(\frac{\sqrt{3}}{2}\right)^3 \] 4. **Calculate \( \cos^3 \theta \)**: \[ \cos^3 \theta = \left(\frac{\sqrt{3}}{2}\right)^3 = \frac{(\sqrt{3})^3}{2^3} = \frac{3\sqrt{3}}{8} \] 5. **Substitute \( \cos^3 \theta \) back into the expression**: \[ 3 \cos \theta - 4 \cos^3 \theta = 3 \left(\frac{\sqrt{3}}{2}\right) - 4 \left(\frac{3\sqrt{3}}{8}\right) \] \[ = \frac{3\sqrt{3}}{2} - \frac{12\sqrt{3}}{8} \] \[ = \frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} = 0 \] 6. **Conclusion**: Therefore, the value of \( 3 \cos \theta - 4 \cos^3 \theta \) is \( 0 \).

To solve the problem, we will follow these steps: 1. **Identify the value of theta**: We know that \( \sin \theta = \frac{1}{2} \) and that \( \theta \) is acute. The sine function equals \( \frac{1}{2} \) at \( 30^\circ \) (or \( \frac{\pi}{6} \) radians). 2. **Calculate cos theta**: Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \cos \theta \): \[ \sin^2 \theta = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 Trigonomertric Ratio of Allied Angle|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If sin2 theta-cos3 theta=0 and theta is acute then theta =

If sin theta =(3)/(5) and theta is acute, then find the value of (tan theta - 2 cos theta )/(3sin theta+sec theta ) .

Knowledge Check

  • If sin theta = (1)/(2) and theta is acute, the (3 cos theta - 4 cos^(3) theta) is equal to (a)0 (b) (1)/(2) (c) (1)/(6) (d) -1

    A
    0
    B
    `(1)/(2)`
    C
    `(1)/(6)`
    D
    `-1`
  • If 3 sin theta + 4 cos theta = 5 , then 3 cos theta - 4 sin theta is equal to?

    A
    a)0
    B
    b)3
    C
    c)4
    D
    d)5
  • If sin theta + sin^(2) theta=1 " then " cos^(2) theta+ cos^(4) theta is equal to

    A
    `-1`
    B
    1
    C
    0
    D
    `1/2`
  • Similar Questions

    Explore conceptually related problems

    If sin theta+cos theta=1, then sin theta cos theta is equal to :

    If sin2 theta=cos3 theta and theta is an acute angle then sin theta is equal to

    If 3 sin theta=2 cos theta , then 3 sin theta=2 cos theta , then (4 sin theta-cos theta)/(4 cos theta+sin theta) is equal to: यदि 3 sin theta=2 cos theta है, तो 3 sin theta=2 cos theta , then (4 sin theta-cos theta)/(4 cos theta+sin theta) का मान क्या होगा ?

    If 3sin theta =2 cos theta , then (4sin theta - cos theta)/(4cos theta+sin theta) is equal to :

    If sin theta + sin^(2) theta + sin^(3) theta =1 , then cos^(6) theta - 4 cos^(4) theta + 8 cos ^(2) theta =