Home
Class 12
MATHS
If cos x + cos^(2) x =1 then the val...

If ` cos x + cos^(2) x =1 ` then the value of ` sin^(12) x + 3 sin^(10) x + 3 sin^(8) x + sin^(6) x -1` is

A

2

B

1

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x + \cos^2 x = 1 \) and find the value of \( \sin^{12} x + 3 \sin^{10} x + 3 \sin^8 x + \sin^6 x - 1 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos x + \cos^2 x = 1 \] We can rearrange this to isolate \( \cos^2 x \): \[ \cos^2 x = 1 - \cos x \] ### Step 2: Use the Pythagorean identity Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( \cos^2 x \) in terms of \( \sin^2 x \): \[ \cos^2 x = 1 - \sin^2 x \] Substituting this into our rearranged equation gives: \[ 1 - \sin^2 x = 1 - \cos x \] This simplifies to: \[ \sin^2 x = \cos x \] ### Step 3: Substitute \( \sin^2 x \) into the expression Now we need to evaluate: \[ \sin^{12} x + 3 \sin^{10} x + 3 \sin^8 x + \sin^6 x - 1 \] Since \( \sin^2 x = \cos x \), we can substitute \( \sin^2 x \) into the expression: Let \( y = \sin^2 x \), then: - \( \sin^6 x = y^3 \) - \( \sin^8 x = y^4 \) - \( \sin^{10} x = y^5 \) - \( \sin^{12} x = y^6 \) Thus, we rewrite the expression as: \[ y^6 + 3y^5 + 3y^4 + y^3 - 1 \] ### Step 4: Factor the expression The expression \( y^6 + 3y^5 + 3y^4 + y^3 \) can be factored. Notice that: \[ y^6 + 3y^5 + 3y^4 + y^3 = (y^3)(y^3 + 3y^2 + 3y + 1) = (y^3)(y + 1)^3 \] So we can rewrite the expression as: \[ (y^3)(y + 1)^3 - 1 \] ### Step 5: Evaluate at \( y = \cos x \) Since \( y = \sin^2 x = \cos x \), we substitute \( y = \cos x \): \[ (\cos^3 x)(\cos x + 1)^3 - 1 \] From our earlier equation \( \cos x + \cos^2 x = 1 \), we know that \( \cos x + 1 = 1 - \cos^2 x + 1 = 2 - \cos^2 x \). ### Step 6: Find the final value Given that \( \cos^2 x = 1 - \sin^2 x \) and substituting back, we find: \[ \cos^3 x + 3 \cos^2 x + 3 \cos x + 1 - 1 = 0 \] Thus, the final value is: \[ 0 \] ### Final Answer The value of \( \sin^{12} x + 3 \sin^{10} x + 3 \sin^8 x + \sin^6 x - 1 \) is \( \boxed{0} \).

To solve the equation \( \cos x + \cos^2 x = 1 \) and find the value of \( \sin^{12} x + 3 \sin^{10} x + 3 \sin^8 x + \sin^6 x - 1 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos x + \cos^2 x = 1 \] We can rearrange this to isolate \( \cos^2 x \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 Trigonomertric Ratio of Allied Angle|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If cos x + cos^(2)x =1 , then the value of sin^(12)x + 3 sin^(10)x + 3sin^(8)x + sin^(6)x -1 is:

If cos^2x + cosx = 1 , then what is the value of : sin^12 x + 3sin^(10) x + 3 sin^8 x + sin^6 x ?

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to

" If "cos x+cos^(2)x+cos^(3)x=1" ,then the value of "sin^(6)x-4sin^(4)x+8sin^(2)x" is"

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If 2cos x+sin x=1, then find the value of 7cos x+6sin x

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. sin^(6) theta + cos^(6) theta is equal to

    Text Solution

    |

  2. cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos...

    Text Solution

    |

  3. (sin(90^(@) -theta)sin theta)/(tan theta) + sin^(2) theta is equal to

    Text Solution

    |

  4. If tantheta=(20)/(21) , show that (1-sintheta+costheta)/(1+sintheta...

    Text Solution

    |

  5. For 0 le theta le pi/2 the maximum value of sin theta + cos theta i...

    Text Solution

    |

  6. (cos 70^(@))/(sin 20^(@)) + (cos 59^(@))/(sin 31^(@) ) - 8 sin^(2) 30^...

    Text Solution

    |

  7. If sin theta = 1/2 and theta is acute then (3 cos theta -4 cos^(3) ...

    Text Solution

    |

  8. If 3 sin theta + 4 cos theta =5 , then value of sin theta is

    Text Solution

    |

  9. If theta "is theta " and (cos^(2)theta)/(cot^(2) theta -cos^(2) theta)...

    Text Solution

    |

  10. The value of (1+cos (pi/6))(1+cos(pi/3))(1+cos ((2pi)/3))(1+cos((7pi...

    Text Solution

    |

  11. If cos 20^(@) - sin 20^(@) =p " then " cos 40^(@) is equal to

    Text Solution

    |

  12. If Sn=cos^ntheta+sin^n tehta then find teh value of 3S4-2S6

    Text Solution

    |

  13. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  14. If x sin^3theta+ycos^3theta=sinthetacostheta and xsintheta=ycostheta ...

    Text Solution

    |

  15. If theta in the first quadrant and 5 tan theta =4 " then " ( 5 sin ...

    Text Solution

    |

  16. If sinA+cosA=m and sin^3 A +cos^3 A = n then

    Text Solution

    |

  17. If sintheta+cosectheta=2 then the value of sin^(10)theta+cosec^(10)the...

    Text Solution

    |

  18. sec^2theta=(4x y)/((x+y)^2) is true if and only if

    Text Solution

    |

  19. If sec theta + tan theta = k, cos theta equals to

    Text Solution

    |

  20. ABC is a right angled isosceles triangle with /B=90^@ If D is a point ...

    Text Solution

    |