Home
Class 12
MATHS
If 0ltbetalt(pi)/(4),cos(alpha+beta)=(3)...

If `0ltbetalt(pi)/(4),cos(alpha+beta)=(3)/(5) andcos(alpha-beta)=(4)/(5)`, then sin `2alpha` is equal to

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given information and trigonometric identities. ### Step 1: Understand the Given Information We are given: - \( \cos(\alpha + \beta) = \frac{3}{5} \) - \( \cos(\alpha - \beta) = \frac{4}{5} \) ### Step 2: Use the Cosine Addition and Subtraction Formulas We know the following formulas: - \( \cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta \) - \( \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta \) Let: - \( x = \cos\alpha \cos\beta \) - \( y = \sin\alpha \sin\beta \) From the given equations, we can write: 1. \( x - y = \frac{3}{5} \) (Equation 1) 2. \( x + y = \frac{4}{5} \) (Equation 2) ### Step 3: Solve for \( x \) and \( y \) To find \( x \) and \( y \), we can add and subtract the two equations. Adding Equation 1 and Equation 2: \[ (x - y) + (x + y) = \frac{3}{5} + \frac{4}{5} \] \[ 2x = \frac{7}{5} \implies x = \frac{7}{10} \] Subtracting Equation 1 from Equation 2: \[ (x + y) - (x - y) = \frac{4}{5} - \frac{3}{5} \] \[ 2y = \frac{1}{5} \implies y = \frac{1}{10} \] ### Step 4: Find \( \sin^2\alpha \) and \( \cos^2\alpha \) Using the identities: \[ x = \cos\alpha \cos\beta = \frac{7}{10} \] \[ y = \sin\alpha \sin\beta = \frac{1}{10} \] We also know: \[ \sin^2\alpha + \cos^2\alpha = 1 \] ### Step 5: Use the Pythagorean Identity Let: - \( \cos^2\alpha = a \) - \( \sin^2\alpha = 1 - a \) From \( x \) and \( y \): \[ \cos^2\alpha \cos^2\beta = \left(\frac{7}{10}\right)^2 = \frac{49}{100} \] \[ \sin^2\alpha \sin^2\beta = \left(\frac{1}{10}\right)^2 = \frac{1}{100} \] ### Step 6: Calculate \( \sin 2\alpha \) We know: \[ \sin 2\alpha = 2 \sin\alpha \cos\alpha \] Using \( \sin\alpha = \sqrt{1 - \cos^2\alpha} \) and \( \cos\alpha = \sqrt{\cos^2\alpha} \): \[ \sin 2\alpha = 2 \cdot \sqrt{1 - a} \cdot \sqrt{a} \] ### Step 7: Substitute Values Now we need to find \( a \): Using \( x \) and \( y \): \[ \sin^2\alpha = \frac{1}{10} \implies \sin\alpha = \frac{1}{\sqrt{10}}, \quad \cos^2\alpha = 1 - \frac{1}{10} = \frac{9}{10} \implies \cos\alpha = \frac{3}{\sqrt{10}} \] Thus: \[ \sin 2\alpha = 2 \cdot \frac{1}{\sqrt{10}} \cdot \frac{3}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5} \] ### Final Answer Thus, \( \sin 2\alpha = 1 \).

To solve the problem step by step, we will use the given information and trigonometric identities. ### Step 1: Understand the Given Information We are given: - \( \cos(\alpha + \beta) = \frac{3}{5} \) - \( \cos(\alpha - \beta) = \frac{4}{5} \) ### Step 2: Use the Cosine Addition and Subtraction Formulas ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos

Similar Questions

Explore conceptually related problems

If 0

If 0

If alpha and beta be between 0 and (pi)/(2)and if cos(alpha+beta)=(12)/(13) and sin(alpha-beta)=3/5, then sin 2 alpha is equal to

If alpha,betain(0,(pi)/(2)),sinalpha=(4)/(5)and cos(alpha+beta)=-(12)/(13) , then sin beta is equal to

If 0 lt beta lt alpha lt pi//4, cos(alpha+beta)=3//5 and cos(alpha-beta)=4//5 , then evaluate sin 2alpha .

" If cos(alpha+beta)=(3)/(5) sin(alpha-beta)=(5)/(13) and 0< alpha, beta < (pi)/(4) then tan(2 alpha) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES-Exercise 2 (MISCELLANEOUS PROBLEMS)
  1. If 0ltbetalt(pi)/(4),cos(alpha+beta)=(3)/(5) andcos(alpha-beta)=(4)/(5...

    Text Solution

    |

  2. If sinA+sinB=C,cosA+cosB=D, then the value of sin(A+B)=

    Text Solution

    |

  3. If theta lies in the first quardrant and costheta=(8)/( 17 ), then fi...

    Text Solution

    |

  4. If tanx+tan((pi)/(3)-x)+tan((2pi)/(3)+x)=3, then

    Text Solution

    |

  5. If sin(theta+alpha)=a andsin(theta+beta)=b, then prove that cos(alpha...

    Text Solution

    |

  6. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  7. If tanalpha,tanbeta are the roots of the equation x^(2)+px+q=0(pne0), ...

    Text Solution

    |

  8. If cos(A-B)=3/5 and tanA .tan B=2, then

    Text Solution

    |

  9. tan100^0+tan125^0+tan100^0tan125^0 is equal to

    Text Solution

    |

  10. If pi/2 lt alpha lt pi, pi lt beta lt 3pi/2; sin alpha = 15/17 and tan...

    Text Solution

    |

  11. If sintheta=(12)/(13),(0ltthetalt(pi)/(2))and cosphi=-(3)/(5),(piltph...

    Text Solution

    |

  12. If tanA-tan B=x, and cot B-cotA=y, then find the value of cot(A-B).

    Text Solution

    |

  13. sin4theta can be written as

    Text Solution

    |

  14. If cos 2B =cos(A+C)/cos( A-C), then tanA, tanB, tanC are in

    Text Solution

    |

  15. If (2sinalpha)/({1+cosalpha+sinalpha})=y, then ({1-cosalpha+sinalph...

    Text Solution

    |

  16. (sintheta+sin2theta)/(1+costheta+cos2theta)=

    Text Solution

    |

  17. (sin3theta-cos3theta)/(sintheta+costheta)+1=

    Text Solution

    |

  18. If tanalpha=(1)/(7) and tanbeta=(1)/(3), then cos2alpha is equal to

    Text Solution

    |

  19. If tanbeta=costhetatanalpha, then "tan"^(2)(theta)/(2)=

    Text Solution

    |

  20. sec^2 A(1+sec2A) = 2sec2A

    Text Solution

    |

  21. 2sinAcos^3A-2sin^3AcosA=

    Text Solution

    |