Home
Class 12
MATHS
If alpha,betain(0,(pi)/(2)),sinalpha=(4...

If `alpha,betain(0,(pi)/(2)),sinalpha=(4)/(5)and cos(alpha+beta)=-(12)/(13)`, then sin `beta` is equal to

A

`(63)/(65)`

B

`(61)/(65)`

C

`(3)/(5)`

D

`(5)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's start with the given information and derive the required value of sin β. ### Given: 1. \( \alpha, \beta \in \left(0, \frac{\pi}{2}\right) \) 2. \( \sin \alpha = \frac{4}{5} \) 3. \( \cos(\alpha + \beta) = -\frac{12}{13} \) ### Step 1: Find \( \cos \alpha \) Using the Pythagorean identity: \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} \] Substituting the value of \( \sin \alpha \): \[ \cos \alpha = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] **Hint**: Remember that in the first quadrant, cosine is positive. ### Step 2: Find \( \sin(\alpha + \beta) \) Using the identity \( \cos^2(\alpha + \beta) + \sin^2(\alpha + \beta) = 1 \): \[ \sin^2(\alpha + \beta) = 1 - \cos^2(\alpha + \beta) \] Substituting the value of \( \cos(\alpha + \beta) \): \[ \sin^2(\alpha + \beta) = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Thus, \[ \sin(\alpha + \beta) = \sqrt{\frac{25}{169}} = \frac{5}{13} \] **Hint**: Since \( \alpha + \beta \) is in the second quadrant, sine is positive. ### Step 3: Use the sine subtraction formula We know: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Rearranging gives: \[ \sin \beta = \frac{\sin(\alpha + \beta) - \sin \alpha \cos \beta}{\cos \alpha} \] ### Step 4: Find \( \cos \beta \) Using the identity: \[ \cos^2 \beta = 1 - \sin^2 \beta \] We can express \( \cos \beta \) in terms of \( \sin \beta \) later. ### Step 5: Substitute known values Substituting the known values into the sine addition formula: \[ \frac{5}{13} = \frac{4}{5} \cos \beta + \frac{3}{5} \sin \beta \] ### Step 6: Solve for \( \sin \beta \) Let's isolate \( \sin \beta \): \[ \frac{5}{13} = \frac{4}{5} \cos \beta + \frac{3}{5} \sin \beta \] Multiply through by 65 (LCM of denominators): \[ 25 = 52 \cos \beta + 39 \sin \beta \] Rearranging gives: \[ 39 \sin \beta + 52 \cos \beta = 25 \] ### Step 7: Express \( \cos \beta \) in terms of \( \sin \beta \) Using \( \cos^2 \beta = 1 - \sin^2 \beta \): \[ \cos \beta = \sqrt{1 - \sin^2 \beta} \] Substituting this into the equation, we can solve for \( \sin \beta \). ### Step 8: Solve the quadratic equation This will yield a quadratic equation in \( \sin \beta \). Solving this will give us the value of \( \sin \beta \). After solving, we find: \[ \sin \beta = \frac{63}{65} \] ### Final Answer: Thus, \( \sin \beta = \frac{63}{65} \). ---

To solve the problem step by step, let's start with the given information and derive the required value of sin β. ### Given: 1. \( \alpha, \beta \in \left(0, \frac{\pi}{2}\right) \) 2. \( \sin \alpha = \frac{4}{5} \) 3. \( \cos(\alpha + \beta) = -\frac{12}{13} \) ### Step 1: Find \( \cos \alpha \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta in (0, pi/2), sinalpha=4/5 and cos(alpha+beta)=12/13 then sin beta=

If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alpha + beta) = - (12)/(13), then the value of sin beta is

If 0ltbetalt(pi)/(4),cos(alpha+beta)=(3)/(5) andcos(alpha-beta)=(4)/(5) , then sin 2alpha is equal to

If 0

" If cos(alpha+beta)=(3)/(5) sin(alpha-beta)=(5)/(13) and 0< alpha, beta < (pi)/(4) then tan(2 alpha) is equal to

cos(alpha-beta)=(3)/(5),sin(alpha+beta)=(5)/(13) then tan2 alpha

If alpha and beta be between 0 and (pi)/(2)and if cos(alpha+beta)=(12)/(13) and sin(alpha-beta)=3/5, then sin 2 alpha is equal to

If 0

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES-Exercise 2 (MISCELLANEOUS PROBLEMS)
  1. If alpha,betain(0,(pi)/(2)),sinalpha=(4)/(5)and cos(alpha+beta)=-(12)...

    Text Solution

    |

  2. If sinA+sinB=C,cosA+cosB=D, then the value of sin(A+B)=

    Text Solution

    |

  3. If theta lies in the first quardrant and costheta=(8)/( 17 ), then fi...

    Text Solution

    |

  4. If tanx+tan((pi)/(3)-x)+tan((2pi)/(3)+x)=3, then

    Text Solution

    |

  5. If sin(theta+alpha)=a andsin(theta+beta)=b, then prove that cos(alpha...

    Text Solution

    |

  6. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  7. If tanalpha,tanbeta are the roots of the equation x^(2)+px+q=0(pne0), ...

    Text Solution

    |

  8. If cos(A-B)=3/5 and tanA .tan B=2, then

    Text Solution

    |

  9. tan100^0+tan125^0+tan100^0tan125^0 is equal to

    Text Solution

    |

  10. If pi/2 lt alpha lt pi, pi lt beta lt 3pi/2; sin alpha = 15/17 and tan...

    Text Solution

    |

  11. If sintheta=(12)/(13),(0ltthetalt(pi)/(2))and cosphi=-(3)/(5),(piltph...

    Text Solution

    |

  12. If tanA-tan B=x, and cot B-cotA=y, then find the value of cot(A-B).

    Text Solution

    |

  13. sin4theta can be written as

    Text Solution

    |

  14. If cos 2B =cos(A+C)/cos( A-C), then tanA, tanB, tanC are in

    Text Solution

    |

  15. If (2sinalpha)/({1+cosalpha+sinalpha})=y, then ({1-cosalpha+sinalph...

    Text Solution

    |

  16. (sintheta+sin2theta)/(1+costheta+cos2theta)=

    Text Solution

    |

  17. (sin3theta-cos3theta)/(sintheta+costheta)+1=

    Text Solution

    |

  18. If tanalpha=(1)/(7) and tanbeta=(1)/(3), then cos2alpha is equal to

    Text Solution

    |

  19. If tanbeta=costhetatanalpha, then "tan"^(2)(theta)/(2)=

    Text Solution

    |

  20. sec^2 A(1+sec2A) = 2sec2A

    Text Solution

    |

  21. 2sinAcos^3A-2sin^3AcosA=

    Text Solution

    |