Home
Class 12
MATHS
If sqrt((1+cosA)/(1-cosA))=(x)/(y) the...

If `sqrt((1+cosA)/(1-cosA))=(x)/(y)` then the value of tan A is

A

`(x^(2)+y^(2))/(x^(2)-y^(2))`

B

`(2xy)/(x^(2)+y^(2))`

C

`(2xy)/(x^(2)-y^(2))`

D

`(2xy)/(y^(2)-x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{\frac{1 + \cos A}{1 - \cos A}} = \frac{x}{y} \) and find the value of \( \tan A \), we can follow these steps: ### Step 1: Use Trigonometric Identities We start by using the trigonometric identities for \( 1 + \cos A \) and \( 1 - \cos A \): \[ 1 + \cos A = 2 \cos^2\left(\frac{A}{2}\right) \] \[ 1 - \cos A = 2 \sin^2\left(\frac{A}{2}\right) \] ### Step 2: Substitute the Identities Substituting these identities into the original equation gives: \[ \sqrt{\frac{2 \cos^2\left(\frac{A}{2}\right)}{2 \sin^2\left(\frac{A}{2}\right)}} = \frac{x}{y} \] ### Step 3: Simplify the Expression The \( 2 \) in the numerator and denominator cancels out: \[ \sqrt{\frac{\cos^2\left(\frac{A}{2}\right)}{\sin^2\left(\frac{A}{2}\right)}} = \frac{x}{y} \] This simplifies to: \[ \sqrt{\cot^2\left(\frac{A}{2}\right)} = \frac{x}{y} \] Since \( \sqrt{\cot^2\left(\frac{A}{2}\right)} = \cot\left(\frac{A}{2}\right) \), we have: \[ \cot\left(\frac{A}{2}\right) = \frac{x}{y} \] ### Step 4: Find the Reciprocal Taking the reciprocal gives: \[ \tan\left(\frac{A}{2}\right) = \frac{y}{x} \] ### Step 5: Use the Double Angle Formula for Tangent Using the double angle formula for tangent: \[ \tan A = \frac{2 \tan\left(\frac{A}{2}\right)}{1 - \tan^2\left(\frac{A}{2}\right)} \] Substituting \( \tan\left(\frac{A}{2}\right) = \frac{y}{x} \): \[ \tan A = \frac{2 \cdot \frac{y}{x}}{1 - \left(\frac{y}{x}\right)^2} \] ### Step 6: Simplify the Expression This becomes: \[ \tan A = \frac{\frac{2y}{x}}{1 - \frac{y^2}{x^2}} = \frac{\frac{2y}{x}}{\frac{x^2 - y^2}{x^2}} = \frac{2y \cdot x^2}{x(x^2 - y^2)} = \frac{2xy}{x^2 - y^2} \] ### Final Result Thus, the value of \( \tan A \) is: \[ \tan A = \frac{2xy}{x^2 - y^2} \]

To solve the equation \( \sqrt{\frac{1 + \cos A}{1 - \cos A}} = \frac{x}{y} \) and find the value of \( \tan A \), we can follow these steps: ### Step 1: Use Trigonometric Identities We start by using the trigonometric identities for \( 1 + \cos A \) and \( 1 - \cos A \): \[ 1 + \cos A = 2 \cos^2\left(\frac{A}{2}\right) \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos

Similar Questions

Explore conceptually related problems

If ((1+cosA))/(2)=x then the value of x is

Simplify: sqrt((1+cosA)/(1-cosA))

Simplify: sqrt((1-cosA)/(1+cosA))

If (1+ cosA)(1-cosA) = 3/4 , find the value of sec A.

If tan A=(5)/(12) , then the value of cosA is

If sinA+cosA=(3)/(5) , then find the value of sinA-cosA .

If (cosA)/(cosB)=(x)/(y) , where A!=B , then

If (sinA+cosA)/(cosA)=17/12 , then the value of (1-cosA)/(sinA) is: यदि (sinA+cosA)/(cosA)=17/12 ,है, तो (1-cosA)/(sinA) का मान क्या होगा ?

If sinA-cosA=(sqrt(3)-1)/(2) , then the value of sin A . cos A is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES-Exercise 2 (MISCELLANEOUS PROBLEMS)
  1. If sqrt((1+cosA)/(1-cosA))=(x)/(y) then the value of tan A is

    Text Solution

    |

  2. If sinA+sinB=C,cosA+cosB=D, then the value of sin(A+B)=

    Text Solution

    |

  3. If theta lies in the first quardrant and costheta=(8)/( 17 ), then fi...

    Text Solution

    |

  4. If tanx+tan((pi)/(3)-x)+tan((2pi)/(3)+x)=3, then

    Text Solution

    |

  5. If sin(theta+alpha)=a andsin(theta+beta)=b, then prove that cos(alpha...

    Text Solution

    |

  6. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  7. If tanalpha,tanbeta are the roots of the equation x^(2)+px+q=0(pne0), ...

    Text Solution

    |

  8. If cos(A-B)=3/5 and tanA .tan B=2, then

    Text Solution

    |

  9. tan100^0+tan125^0+tan100^0tan125^0 is equal to

    Text Solution

    |

  10. If pi/2 lt alpha lt pi, pi lt beta lt 3pi/2; sin alpha = 15/17 and tan...

    Text Solution

    |

  11. If sintheta=(12)/(13),(0ltthetalt(pi)/(2))and cosphi=-(3)/(5),(piltph...

    Text Solution

    |

  12. If tanA-tan B=x, and cot B-cotA=y, then find the value of cot(A-B).

    Text Solution

    |

  13. sin4theta can be written as

    Text Solution

    |

  14. If cos 2B =cos(A+C)/cos( A-C), then tanA, tanB, tanC are in

    Text Solution

    |

  15. If (2sinalpha)/({1+cosalpha+sinalpha})=y, then ({1-cosalpha+sinalph...

    Text Solution

    |

  16. (sintheta+sin2theta)/(1+costheta+cos2theta)=

    Text Solution

    |

  17. (sin3theta-cos3theta)/(sintheta+costheta)+1=

    Text Solution

    |

  18. If tanalpha=(1)/(7) and tanbeta=(1)/(3), then cos2alpha is equal to

    Text Solution

    |

  19. If tanbeta=costhetatanalpha, then "tan"^(2)(theta)/(2)=

    Text Solution

    |

  20. sec^2 A(1+sec2A) = 2sec2A

    Text Solution

    |

  21. 2sinAcos^3A-2sin^3AcosA=

    Text Solution

    |