Home
Class 12
MATHS
एक रेखा, एक घन के विकर्णों के साथ alph...

एक रेखा, एक घन के विकर्णों के साथ `alpha, beta, gamma, delta`, कोण बनती है तो सिद्ध कीजिए कि
` " " cos ^(2) alpha + cos ^(2) beta + cos ^(2) gamma + cos ^(2) delta = ( 4)/(3)`

A

1

B

`4//3`

C

`3//4`

D

`4//5`

Text Solution

Verified by Experts

The correct Answer is:
B

Let the DC's of given line be l,m,n. Diagonals of cube are OP,AL,BM,CN. The DC's of the diagonals are `(1/sqrt3,1/sqrt3,1/sqrt3),((-1)/sqrt3,1/sqrt3,1/sqrt3),(1/sqrt3,1/sqrt3,1/sqrt3),(1/sqrt3,(-1)/sqrt3,1/sqrt3),(1/sqrt3,1/sqrt3,(-1)/sqrt3)`
Let the line makes the angles with the diagonals OA,AL,BM and CN are respectively, `alpha,beta,gamma and delta`
`therefore" "cosalpha=(l+m+n)/sqrt3,cosbeta=(-l+m+n)/sqrt3`
`cosgamma=(l-m+n)/sqrt3,cosgamma=(l+m-n)/sqrt3`
`thereforecos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4/3(l^2+m^2+n^2)=4/3`
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|22 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • STRAIGHT LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2(MISCELLANEOUS PROBLEMS)|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos

Similar Questions

Explore conceptually related problems

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If a line makes angles alpha, beta, gamma, delta with the diafonals of a cubes then the value of 9(cos 2alpha + cos 2beta + cos2gamma + cos 2delta)^(2) equals ….......

A line makes angles alpha,beta,gamma and delta with the diagonals of a cube.Show that cos^(2)alpha+cos^(2)beta+cos^(2)gamma+cos^(2)delta=4/3

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

A line makes angles alpha,beta,gamma and with the diagonals of a cube,prove that cos^(2)alpha+cos^(2)beta+cos^(2)gamma+cos^(2)delta=(4)/(3)