Home
Class 12
MATHS
The angle between the two lines having d...

The angle between the two lines having direction cosines `(2/sqrt(6),-1/sqrt6,1/sqrt6) and (1/sqrt6,1/sqrt6,2/sqrt6)` is

A

`pi/6`

B

`pi/4`

C

`pi/2`

D

`pi/3`

Text Solution

Verified by Experts

The correct Answer is:
D

Given `(l_1,m_1,n_1)=(2/sqrt6,(-1)/sqrt6,1/sqrt6)`
and `(l_2,m_2,n_2) = (1/sqrt6,(1)/sqrt6,2/sqrt6)`
`therefore" "costhetal_1l_2+m_1m_2+n_1n_2`
`rArr" "costheta=2/sqrt6xx1/sqrt6+(-1/sqrt6)xx1/sqrt6+1/sqrt6xx2/sqrt6`
`=2/6-1/6+2/6=3/6=1/2`
`rArr" "theta=pi/6`
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|22 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • STRAIGHT LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2(MISCELLANEOUS PROBLEMS)|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos

Similar Questions

Explore conceptually related problems

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

(1)/(sqrt(7)-sqrt(6))

Find the angle between the plane x+y-2z+5=0 and the line whose direction cosines are 1/sqrt(6),2/sqrt(6),1/sqrt(6) .

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

1/(sqrt7+sqrt6-sqrt13)=

If the direction cosines of two lines are (1)/(sqrt(6)),(-1)/(sqrt(6)),(2)/(sqrt(6))and(2)/(sqrt(6)),(1)/(sqrt(6)),(-1)/(sqrt(6)) respectively, then the acute angle between them is

(sqrt(6)+sqrt(5)+ 1/(sqrt(6)+sqrt(5)))^2

sqrt(6-sqrt(6-sqrt(6-...oo)))=