Home
Class 12
MATHS
The maximum value of Z =x +3y such that ...

The maximum value of Z =x +3y such that ` 2x +y le 20, x +2y le 20, x ge 0, y ge 0 ` is

A

10

B

60

C

30

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of maximizing \( Z = x + 3y \) subject to the constraints \( 2x + y \leq 20 \), \( x + 2y \leq 20 \), \( x \geq 0 \), and \( y \geq 0 \), we will follow these steps: ### Step 1: Identify the Constraints The constraints are: 1. \( 2x + y \leq 20 \) 2. \( x + 2y \leq 20 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines, we convert the inequalities to equations: 1. \( 2x + y = 20 \) 2. \( x + 2y = 20 \) ### Step 3: Find Intercepts For each line, we find the x-intercept and y-intercept. **For \( 2x + y = 20 \):** - When \( x = 0 \): \( y = 20 \) (Point: \( (0, 20) \)) - When \( y = 0 \): \( 2x = 20 \) → \( x = 10 \) (Point: \( (10, 0) \)) **For \( x + 2y = 20 \):** - When \( x = 0 \): \( 2y = 20 \) → \( y = 10 \) (Point: \( (0, 10) \)) - When \( y = 0 \): \( x = 20 \) (Point: \( (20, 0) \)) ### Step 4: Plot the Lines We plot the points \( (0, 20) \), \( (10, 0) \), \( (0, 10) \), and \( (20, 0) \) on the coordinate plane. ### Step 5: Determine Feasible Region The feasible region is where all constraints overlap. We check the origin \( (0, 0) \) in both inequalities: 1. \( 2(0) + (0) \leq 20 \) → True 2. \( (0) + 2(0) \leq 20 \) → True Thus, the feasible region is in the first quadrant and below the lines. ### Step 6: Find Intersection of the Lines To find the intersection of the two lines: 1. From \( 2x + y = 20 \) 2. From \( x + 2y = 20 \) We can solve these equations simultaneously. First, multiply the second equation by 2: \[ 2x + 4y = 40 \] Now we have: 1. \( 2x + y = 20 \) 2. \( 2x + 4y = 40 \) Subtract the first equation from the second: \[ 3y = 20 \] \[ y = \frac{20}{3} \] Substituting \( y \) back into the first equation: \[ 2x + \frac{20}{3} = 20 \] \[ 2x = 20 - \frac{20}{3} \] \[ 2x = \frac{60}{3} - \frac{20}{3} = \frac{40}{3} \] \[ x = \frac{20}{3} \] Thus, the intersection point is \( \left(\frac{20}{3}, \frac{20}{3}\right) \). ### Step 7: Evaluate Objective Function at Corner Points Now we evaluate \( Z = x + 3y \) at the corner points: 1. \( (0, 0) \): \( Z = 0 + 3(0) = 0 \) 2. \( (0, 10) \): \( Z = 0 + 3(10) = 30 \) 3. \( (10, 0) \): \( Z = 10 + 3(0) = 10 \) 4. \( \left(\frac{20}{3}, \frac{20}{3}\right) \): \[ Z = \frac{20}{3} + 3\left(\frac{20}{3}\right) = \frac{20}{3} + \frac{60}{3} = \frac{80}{3} \approx 26.67 \] ### Step 8: Conclusion The maximum value of \( Z \) occurs at the point \( (0, 10) \) and is \( Z = 30 \). ### Final Answer The maximum value of \( Z \) is **30**.

To solve the problem of maximizing \( Z = x + 3y \) subject to the constraints \( 2x + y \leq 20 \), \( x + 2y \leq 20 \), \( x \geq 0 \), and \( y \geq 0 \), we will follow these steps: ### Step 1: Identify the Constraints The constraints are: 1. \( 2x + y \leq 20 \) 2. \( x + 2y \leq 20 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS )|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos

Similar Questions

Explore conceptually related problems

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge

y - 2x le 1, x + y le 2, x ge 0, y ge 0

3x + 4y le 60, x ge 2y , x ge1 , y ge 0

Maximum value of p=6x+8y subject to 2x+y le 30, x + 2y le 24, x ge 0, y ge 0 is

The maximum value of Z = 3x + 2y for linear x +y le 7, 2x + 3y le 16, x ge 0, y ge 0 is the objective function constraints

The maximum value of 2x +y subject to 3x +5y le 26 and 5x +3y le 30 , x ge 0, y ge 0 is

x + y le 10, 4x + 3y le 24, x ge , x ge 0, y ge 0