Home
Class 12
MATHS
The iinear programming problem Maximise ...

The iinear programming problem Maximise `Z=x_1 +x_2 `
Subject to constraints
` x_1+2x_2 le le 2000`
` x_1+ x_2 le 15000`
` x_2 le 600`
` x_1 ge has `

A

no feasible solution

B

unique optimal solution

C

a finite number of optimal solutions

D

infinite number of optimal solutions

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem, we need to maximize the objective function \( Z = x_1 + x_2 \) subject to the given constraints. Let's go through the steps systematically. ### Step 1: Identify the Constraints The constraints given are: 1. \( x_1 + 2x_2 \leq 2000 \) 2. \( x_1 + x_2 \leq 1500 \) 3. \( x_2 \leq 600 \) 4. \( x_1 \geq 0 \) 5. \( x_2 \geq 0 \) ### Step 2: Convert Constraints to Equations To find the boundary lines for the constraints, we convert the inequalities into equations: 1. \( x_1 + 2x_2 = 2000 \) 2. \( x_1 + x_2 = 1500 \) 3. \( x_2 = 600 \) ### Step 3: Find Intercepts of Each Equation For each equation, we find the intercepts: 1. **For \( x_1 + 2x_2 = 2000 \)**: - When \( x_1 = 0 \): \( 2x_2 = 2000 \) → \( x_2 = 1000 \) → Point (0, 1000) - When \( x_2 = 0 \): \( x_1 = 2000 \) → Point (2000, 0) 2. **For \( x_1 + x_2 = 1500 \)**: - When \( x_1 = 0 \): \( x_2 = 1500 \) → Point (0, 1500) - When \( x_2 = 0 \): \( x_1 = 1500 \) → Point (1500, 0) 3. **For \( x_2 = 600 \)**: - This is a horizontal line at \( x_2 = 600 \). ### Step 4: Determine Points of Intersection Next, we find the points of intersection of the lines: 1. **Intersection of \( x_1 + 2x_2 = 2000 \) and \( x_1 + x_2 = 1500 \)**: - Subtract the second equation from the first: \[ (x_1 + 2x_2) - (x_1 + x_2) = 2000 - 1500 \implies x_2 = 500 \] - Substitute \( x_2 = 500 \) into \( x_1 + x_2 = 1500 \): \[ x_1 + 500 = 1500 \implies x_1 = 1000 \] - Intersection point: (1000, 500) 2. **Intersection of \( x_1 + x_2 = 1500 \) and \( x_2 = 600 \)**: - Substitute \( x_2 = 600 \) into \( x_1 + x_2 = 1500 \): \[ x_1 + 600 = 1500 \implies x_1 = 900 \] - Intersection point: (900, 600) 3. **Intersection of \( x_1 + 2x_2 = 2000 \) and \( x_2 = 600 \)**: - Substitute \( x_2 = 600 \) into \( x_1 + 2x_2 = 2000 \): \[ x_1 + 1200 = 2000 \implies x_1 = 800 \] - Intersection point: (800, 600) ### Step 5: Identify Feasible Region The feasible region is bounded by the points: - A: (0, 1000) - B: (2000, 0) - C: (0, 1500) - D: (1500, 0) - E: (1000, 500) - F: (900, 600) - G: (800, 600) ### Step 6: Evaluate the Objective Function at Each Vertex Now we evaluate \( Z = x_1 + x_2 \) at each vertex: 1. At (0, 1000): \( Z = 0 + 1000 = 1000 \) 2. At (2000, 0): \( Z = 2000 + 0 = 2000 \) 3. At (0, 1500): \( Z = 0 + 1500 = 1500 \) 4. At (1500, 0): \( Z = 1500 + 0 = 1500 \) 5. At (1000, 500): \( Z = 1000 + 500 = 1500 \) 6. At (900, 600): \( Z = 900 + 600 = 1500 \) 7. At (800, 600): \( Z = 800 + 600 = 1400 \) ### Step 7: Determine Maximum Value The maximum value of \( Z \) occurs at points (2000, 0) and (0, 1500), both yielding \( Z = 2000 \). ### Conclusion The maximum value of \( Z \) is **2000** at the point **(2000, 0)**. ---

To solve the linear programming problem, we need to maximize the objective function \( Z = x_1 + x_2 \) subject to the given constraints. Let's go through the steps systematically. ### Step 1: Identify the Constraints The constraints given are: 1. \( x_1 + 2x_2 \leq 2000 \) 2. \( x_1 + x_2 \leq 1500 \) 3. \( x_2 \leq 600 \) 4. \( x_1 \geq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS )|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos

Similar Questions

Explore conceptually related problems

Solve the linear programming problem. Maximise Z = x + 2y Subject to constraints x - y le 10, 2x +3y le 20 and x ge 0, y ge 0

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has

By graphical method, the solutions of linear programming problem maximum Z = 3x_1 + 5x_2 subject to constraints 3x_1+2x_2 le 18 x_1 le 4, x_2 le 6,x_1 ge 0, x_2 ge 0

By graphical method, the solutions of linear programming problem maximise Z=3x_(1)+5x_(2) subject to constraints 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 are

The linear programming problem minimiseZ=3x+2y subject to the constraints x+y ge 8 3x +5y le 15 x ge 0, y ge 0 has

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Consider the linear programming problem Maximise Z = 4x + y. Subject to constraints x+y le 50, x +y ge 100 and x ,y ge 0 Then, maximum vlaue of Z is

Maximize Z = 400x + 500y subject to constraints x + 2y le 80 ,2x + y le 90, x ge 0 , y ge 0

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0