Home
Class 12
MATHS
Consider the linear programming problem ...

Consider the linear programming problem Maximise Z = 4x + y.
Subject to constraints ` x+y le 50, x +y ge 100` and ` x ,y ge 0 ` Then, maximum vlaue of Z is

A

0

B

50

C

100

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
D

Given, maximise , Z= 4x+y and constraints are ` x+y le 50, x +y ge 100, x y ge 0 `

It is clear from the graph that, there is no feasible reg.ion, so maximum value cannot be determined.
Promotional Banner

Topper's Solved these Questions

  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS )|30 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos

Similar Questions

Explore conceptually related problems

Solve the linear programming problem. Maximise Z = x + 2y Subject to constraints x - y le 10, 2x +3y le 20 and x ge 0, y ge 0

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Maximize z =2x + 3y subject to constraints x + 4y le 8, 3x + 2y le 14 , x ge 0, y ge 0 .

Maximize Z = 400x + 500y subject to constraints x + 2y le 80 ,2x + y le 90, x ge 0 , y ge 0

Maximize z = 5x + 10y subject to constraints x + 2y le 10 , 3x + y le 12 , x ge 0 , y ge 0

Minimize Z = x + 4y subject to constraints x + 3y ge 3 , 2x + y ge 2, x ge 0 , y ge 0

The linear programming problem minimiseZ=3x+2y subject to the constraints x+y ge 8 3x +5y le 15 x ge 0, y ge 0 has

Maximize : Z = x + y ,subject to the constraints: x - y le -1, -x + y le 0, x ge 0, y ge 0

Maximise Z= -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .