Home
Class 12
MATHS
The constraints -x1+x2 le 1,-x1 +3x2 le ...

The constraints `-x_1+x_2 le 1,-x_1 +3x_2 le 9, x _1,x_2 gt 0` defines

A

bounded feasible space

B

unbounded feasible space

C

both bounded and unbounded feasible space

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
B


So, given constraints define unbounded feasible space.
Promotional Banner

Topper's Solved these Questions

  • Linear Programming

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS )|30 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos

Similar Questions

Explore conceptually related problems

The constraints -x_(1)+x_(2)lt 1, -x_(1)+3x_(2)le9, x_(1), x_(2)gt, 0 difines on

By graphical method, the solutions of linear programming problem maximum Z = 3x_1 + 5x_2 subject to constraints 3x_1+2x_2 le 18 x_1 le 4, x_2 le 6,x_1 ge 0, x_2 ge 0

By graphical method, the solutions of linear programming problem maximise Z=3x_(1)+5x_(2) subject to constraints 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 are

The iinear programming problem Maximise Z=x_1 +x_2 Subject to constraints x_1+2x_2 le le 2000 x_1+ x_2 le 15000 x_2 le 600 x_1 ge has

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has

The objective function Z=x_(1)+x_(2), subject to x_(1) +x_(2) le 10 , - 2x _(1) +3x_(2)le 15, x x_(1) le 6,x_(1),x_(2) ge 0 has maximum value ________ of the feasible region .

The LPP problem Max z=x_(1)+x_(2) such that -2x_(1)+x_(2)le1,x_(1)le2,x_(1)+x_(2)le3 and x_(1),x_(2)ge0 has