Home
Class 12
MATHS
(1)/(sin x.cos^(2)x)...

`(1)/(sin x.cos^(2)x)`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{1}{\sin x \cos^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{\sin x \cos^2 x} \, dx \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(sin x(2cos^(2)x-1))dx

(sin x)/(1+cos^(2)x)

int(1)/(sin^(2)x.cos^(2)x)dx=

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

if int(1)/((sin x)(2cos^(2)x-1))dx=-(1)/(2)A-B then

int(1)/(sin^(2)x*cos^(2)x)dx

int (1)/(sin^(2) x cos^(2)x) dx=?

int(1)/(sin^(2)x cos^(2)x) dx = ?

int(1)/(sin^(2)x-cos^(2)x)dx

Evaluate: int(1)/(sin^(2)x cos^(2)x)dx