`cos^(3)x`

Text Solution

AI Generated Solution

To solve the integral of \( \cos^3 x \) with respect to \( x \), we can use the identity for \( \cos^3 x \) in terms of \( \cos 3x \). ### Step-by-step Solution: 1. **Use the identity for \( \cos^3 x \)**: We know that: \[ \cos^3 x = \frac{1}{4} \left( \cos 3x + 3 \cos x \right) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-2

cos 3x

∫ dx/(sinx cos^3x)

intsqrt((1+cos 3x)/(1-cos3x))dx=

cos^(-1)((3+5cos x)/(5+3cos x))=

int(e^(x)cos3x-4^(x)tan3x)/(4^(x)cos3x)dx=

If y=logsqrt((1-cos((3x)/(2)))/(1+cos ((3x)/(2)))),"then "dy/dx=

The value of int{(cosx-cos^3x)/((1-cos^3x))}^(1//2)dx is :

sqrt(cos3x)

sqrt(cos 3x)