`sec^(6)x`

Text Solution

Verified by Experts

`"Let I"=int sec^(6)xdx=int sec^(4)x sec^(2)x dx`
`=int (sec^(2)x)^(2)sec^(2)xdx`
`=int(1+tan^(2)x)sec^(2)xdx`
Put tan x=t. Then `sec^(2)xdx=dt`
`therefore I=f(1+t^(2))^(2)dt`
`=int(1+2t^(2)+t^(4))dt`
`=int 1 dt+2 intt^(2)dt+intt^(4)dt`
`=t+2. (t^(3))/(3)+(t^(5))/(5)+c`
`=tan x+(2)/(3)tan^(3)x+(1)/(5)tan^(5)x+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Write a value of int tan^(6)x sec^(2)xdx

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

Solve: sec^(2)x tan ydx-sec^(2)y tan xdy=0 , given that y=(pi)/(6), x=(pi)/(3)

Least value of function f(x)=(2sec^(2)x+2sec x+1)/(sec^(2)x+sec x+5)is:

Find the area bounded by y= sec^(2) x , x = pi/6, x = pi/ 3 & x-axis

If 3sec^(2)x - 2tan^(2)x = 6 and 0^(@) le x le 90^(@) then x = ?

Evaluate: int(2cos2x+sec^(2)x)/(sin2x+tan x-6)dx

The solution of the differential equation cos y log(sec x+tan x)dx=cos x log(sec y+tan y)dy is (a) sec^(2)x+sec^(2)y=c(b)sec x+sec y=c(c)sec x-sec y=c(d)Non of these