Home
Class 12
MATHS
(1)/(7+6x-x^(2))...

`(1)/(7+6x-x^(2))`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{1}{7 + 6x - x^2} \, dx \), we will follow these steps: ### Step 1: Rewrite the Denominator First, we rewrite the expression in the denominator to make it easier to integrate. We can rearrange \( 7 + 6x - x^2 \) as follows: \[ -x^2 + 6x + 7 = -(x^2 - 6x - 7) \] Next, we complete the square for the quadratic expression \( x^2 - 6x - 7 \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(7+6x-x^2)=

Integrate the functions (1)/(sqrt(7-6x-x^(2)))

int((2x+1)/(sqrt(7+6x-3x^(2))))dx

int(x+3)/(sqrt(7-6x-x^(2)))dx

Evaluate: int1/(sqrt(7-6x-x^2))\ dx

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

2x^((1)/(6))xx2x^(-(7)/(6))