Home
Class 12
MATHS
(1)/(ae^(x)+be^(-x))...

`(1)/(ae^(x)+be^(-x))`

Text Solution

Verified by Experts

`"Let I"=int (1)/(ae^(x)+be^(-x))dx`
`=int (1)/(ae^(x)+((b)/(e^(x))))dx`
`=int(e^(x))/(ae^(2x)+b)dx`
Put `e^(x)=t`
`therefore e^(x)dx=dt`
`therefore I=int(1)/(at^(2)+b)dt`
`=(1)/(a)int (1)/(t^(2)+((b)/(a)))dt`
`=(1)/(a)int(1)/(t^(2)+(sqrt((b)/(1)))^(2))dt`
`=(1)/(a).(1)/(sqrt((b)/(a)))tan^(-1)[(t)/(sqrt((b)/(a)))]+c=(1)/(a).(sqrta)/(sqrtb)tan^(-1)(sqrt((a)/(b)).t)+c`
`=(1)/(sqrtab)tan^(-1)(sqrt((a)/(b)).e^(x))+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

int(ae^(x)+be^(-x))/((ae^(x)-be^(-x)))dx=

(1) y = ae^(4x) -be^(-3x) +c (2) xy = ae^(5x) +be^(-5x)

If (sin x+ae^(x)+be^(-x)+sin(1+x))/(x^(3)) has a finite limit L as xx^(3)rarr0, then

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

If xy = ae^(x) + be^(-x) satisfies the equation Axy'' +By' = xy , then |A-B| is__________.

The differential equation of the curve xy=ae^(x)+be^(-x)+x^(2) is xy_(2)+ay_(1)+bxy+x^(2)-2=0 .then the value

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

Let lim_(x to 0) f(x) be a finite number, where f(x) = ("sin" x + ae^(x) + be^(-x) + cln (1 + x))/(x^(3)) a,b,e in R