Home
Class 12
MATHS
(sin x)/(sin 3x)...

`(sin x)/(sin 3x)`

Text Solution

Verified by Experts

`"Let I"=int (sin x)/(sin 3x)dx=int (sin x)/(3 sin x-4sin^(2)x)dx=int (1)/((3-4)sin^(2)x)dt`
Dividing both numberator and denominator by `cos^(2)x`, we get
`I=int (sec^(2)x)/(3sec^(2)x-4tan^(2)x)dx`
`I=int (sec^(2)x)/(3-tan^(2)x)dx`
Put tan x=t `therefore sec^(2)xdx=dt`
`therefore I=int (1)/(3-t^(2))dt=int (1)/((sqrt3)^(2)-t^(2))dt`
`=(1)/(2sqrt3)log |(sqrt3+t)/(sqrt3-t)|+c`
`=(1)/(2sqrt3)log|(sqrt3+tanx)/(sqrt3-tanx)|+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

int (sin x) / (sin3x) dx =

(sin x) / (sin3x) + (sin3x) / (cos9x) + (sin9x) / (cos27x) = (tan27x-tan x) / (2)

Evaluate: int(sin x)/(sin3x)dx

The value of (2sin x)/(sin3x)+(tan x)/(tan3x) is

int(sin x)/(sin^(3)x+cos^(3)x)dx

The value of lim_(x rarr0)(sin x+log_(e)(sqrt(1+sin^(2)x)-sin x))/(sin^(3)x)

lim_(x rarr0)(x-sin x)/(sin^(3)x) =

Evaluate the following limit: (lim)_(x rarr0)(sin5x-sin3x)/(sin x)

(sin x) / (sin2x sin3x) + (sin x) / (sin3x sin4x) + (sin x) / (sin4x sin5x) + .... n

lim_ (x rarr0) (tan x-sin x) / (sin3x-3sin x)