Home
Class 12
MATHS
(sec^(2)x-7)/(sin^(7)x)...

`(sec^(2)x-7)/(sin^(7)x)`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{\sec^2 x - 7}{\sin^7 x} \, dx\), we can break it down into two separate integrals: \[ \int \frac{\sec^2 x}{\sin^7 x} \, dx - 7 \int \frac{1}{\sin^7 x} \, dx \] ### Step 1: Rewrite the first integral We can rewrite \(\sec^2 x\) in terms of sine and cosine: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

int((7)/(cos^(2)x)-(3)/(sin^(2)x))dx

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

Suppose int(1-7cos^(2)x)/(sin^(7)x cos^(2)x)dx=(g(x))/(sin^(7)x)+c where C is arbitrary constant of ^(7)x integration.then find value of g'(0)+g''((pi)/(4))

Integrate the following w.r.t.x. (sec^(2)x)/(2tan^(2)x+7tanx+13)

(i) int_(0)^(pi//2)(sin^(7)x)/((sin^(7)x+cos^(7)x))dx=(pi)/(4) (ii) int_(0)^(pi//2)(sin^(5)xdx)/((sin^(5)x+cos^(5)x))dx=(pi)/(4)

int(cos x)/(sin^(7)x)dx

int(sin^(6)x)/(cos^(8)x)dx=tan7x+C(b)(tan^(7)x)/(7)+C (c) (tan7x)/(7)+C(d)sec^(7)x+C

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

If 8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) le x le 90^(@) , then x= ?

The value of int e^(sec x)*sec^(3)x(sin^(2)x+cos x+sin x+sin x cos x)dx