Home
Class 12
MATHS
intlog(x+sqrt(x^2+a^2))dx...

`intlog(x+sqrt(x^2+a^2))dx`

Text Solution

Verified by Experts

`"Let I"=int log(x+sqrt(x^(2)+a^(2)))dx`
`=int log (x+sqrt(x^(2)+a^(2))).1dx`
`=[log (x+sqrt(x^(2)+a^(2))].int 1dx-int {(d)/(dx)[log x+sqrt((x^(2)+a^(2)))[int 1 dx}dx`
`"Now", (d)/(dx)[log (x+sqrt(x^(2)+a^(2))]=(1)/(x+sqrt(x^(2)+a^(2))).(d)/(dx)[x+sqrt(x^(2)+a^(2))]`
`=(1)/(x+sqrt(x^(2)+a^(2))).[1+(1)/(2sqrt(x^(2)+a^(2))).(d)/(dx)(x^(2)+a^2)]`
`=(1)/(x+sqrt(x^(2)+a^(2))).[1+(1)/(2sqrt(x^(2)+a^(2))).2x]`
`=(1)/(x+sqrt(x^(2)+a^(2))).[(sqrt(x^(2)+a^(2)+x))/(sqrt(x^(2)+a^(2)))]`
`=(1)/(sqrt(x^(2)+a^(2)))`
`therefore I=[log(x+sqrt(x^(2)+a^(2))].(x)-int (1)/(sqrt(x^(2)+a^(2))).xdx`
`=x.log(x+sqrt(x^(2)+a^(2)))-(1)/(2)int (2x)/(sqrt(x^(2)+a^(2)))dx`
`"Put "x^(2)+a^(2)=t" "therefore 2xdx=dt`
`therefore I=x.log(x+sqrt(x^(2)+a^(2)))-(1)/(2)int (1)/(sqrtt)dt`
`=x.log (x+sqrt(x^(2)+a^(2)))-(1)/(2)int t^(-(1)/(2))dt`
`=x.log(x+sqrt(x^(2)+a^(2)))-(1)/(2).(t^((1)/(2)))/(((1)/(2)))+c`
`=x.log(x+sqrt(x^(2)+a^(2)))-sqrt(x^(2)+a^(2))+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

intlog(x+sqrt(a^2+x^2))dx

∫(x sqrt(x+2))dx

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

intlog(x+sqrt(1+x^2))/sqrt(1+x^2)dx

int(sqrt(x^(2)-a^(2)))/(x)dx

"int(sqrt(x^(2)+a^(2)))/(x)dx

int(dx)/(x sqrt(x^(2)-a^(2)))

int sqrt(x+sqrt(x^(2)+2))dx

If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=