Home
Class 12
MATHS
int[sin(logx)+cos(logx)]dx...

`int[sin(logx)+cos(logx)]dx`

Text Solution

Verified by Experts

`"Let I=int [sin (log x)+cos (log x)]dx`
Put log x=t. Then, `x=e^(t) therefore dx=e^(t)dt`
`therefore I=int (sin t+cos t)e^(x)dt`
`"If" f(t)=sint, " then "f'(t)=cos t`
`therefore I=int e^(x)[f(t)+f'(t)]dt`
`therefore I=int e^(x)[f(t)+f'(t)]dt`
`=e^(t)f(t)+c=e^(t)sint+c`
`=x.sin (log x)+c`.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(1)^(pi//2)[sin (logx)+cos(logx)]dx.

Evaluate: int[tan(logx)+sec^2(logx)]dx

int cos(logx)dx=?

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

int7^(x logx)(1+logx)dx=

int(cos(logx))/(x)dx

int(log(logx))/(x.logx)dx=

int (log x)/(1+logx)^2 dx