`cos^(2)x`

Text Solution

AI Generated Solution

To solve the integral of \( \cos^2 x \) with respect to \( x \), we can use a trigonometric identity to simplify the expression before integrating. Here’s a step-by-step solution: ### Step 1: Use the Trigonometric Identity We start with the identity for \( \cos^2 x \): \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] This allows us to rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))(cos 2x cos 2^(2)x cos 2^(3)x cos 2^(4)x)dx is equal to

lim_(x->0)(1-cos x-cos2x+cos x*cos2x)/(x^(4))

Lim_(x->0)(1-cos x-cos2x+cos x cos2x)/(x^(4))

Find the maximum value of abs((sin^2x,1+cos^2x,cos2x),(1+sin^2x,cos^2x,cos2x),(sin^2x,cos^2x,sin2x))

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....

int(1+cos 2x)/(1-cos 2x)dx