`cos^(4)x`

Text Solution

AI Generated Solution

To solve the integral of \( \cos^4 x \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite \( \cos^4 x \) We can express \( \cos^4 x \) in terms of \( \cos^2 x \): \[ \cos^4 x = (\cos^2 x)^2 \] Using the identity for \( \cos^2 x \): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

(i) int 1/ (cos^4x+sin^4x)dx (ii) int 1/(sin^4x+sin^2x cos^2x+cos^4x) dx

intdx/(sin^4x+cos^4x)

If f(x)=int(sin2x(cos2x-cos4x))/(cos2x(cos2x+cos4x))dx then the value of f((pi)/(3))-f(0) is

2int(1+cos4x)/(1-cos4x)dx=

int(dx)/(cos(2x)cos(4x))=

Evaluate: int1/(sin^4x+cos^4x)\ dx

The period of cos4x is

The period of function f(x)=(sin x+cos3x+cos4x+|cos4x|+|cos x|) is equal to

1+ cos 2x+ cos4x + cos 6x=