Home
Class 12
MATHS
tan^(-1)x...

`tan^(-1)x`

Text Solution

AI Generated Solution

To solve the integral of \( \tan^{-1}(x) \) with respect to \( x \), we can use integration by parts. Here’s a step-by-step solution: ### Step 1: Identify \( u \) and \( dv \) Let: - \( u = \tan^{-1}(x) \) - \( dv = dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

tan ^ (- 1) ((1 + tan x) / (1-tan x))

tan ^ (- 1) ((cos x-sin x) / (cos x + sin x)) = tan ^ (- 1) ((1-tan x) / (1 + tan x))

tan^(-1)(1/(a-1))=tan^(-1)(1/x)+tan^(-1)((1)/(a^(2)-x+1))

The differentiation of tan^(-1)((tan x+1)/(tan x-1)) where x in(0,(pi)/(4)) with respect (x)/(2) is

(d)/(dx)((1-tan x)/(1+tan x))*(d)/(dx)((1-tan x)/(1+tan x))

sqrt((1-tan x)/(1+tan x))

" tan " ((pi)/(4) +x) =(1 + tan x)/(1-tan x)

" tan " ((pi)/(4) -x) =(1 - tan x)/( 1+ tan x)