Home
Class 12
MATHS
sec^(-1)x...

`sec^(-1)x`

Text Solution

AI Generated Solution

To integrate the function \( \sec^{-1}(x) \) with respect to \( x \), we can follow these steps: ### Step 1: Recall the Formula for the Derivative We start with the derivative of the inverse secant function: \[ \frac{d}{dx}(\sec^{-1}(x)) = \frac{1}{|x| \sqrt{x^2 - 1}} \] This means that the integral of \( \sec^{-1}(x) \) can be approached using integration by parts. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of y=sec^(-1)|x| .

Draw the graph of f(x)=sec^(-1)(sec x)

If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x] + cos^(-1)[sinx ], "then "(dy)/(dx) is equal to

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

sec^(-1)(sin x) is real if

sec^(-1)(sin x) exist if

intlog(sec^-1x)/(xsqrt(x^2-1))dx

Least value of function f(x)=(2sec^(2)x+2sec x+1)/(sec^(2)x+sec x+5)is:

Find derivative of the following functions: (sec x-1)/(sec x+1)

If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?