Home
Class 12
MATHS
x sec^(-1)x...

`x sec^(-1)x`

Text Solution

AI Generated Solution

To solve the integral \( \int x \sec^{-1}(x) \, dx \), we will use the integration by parts formula, which states: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

The set of all values of x satisfying the inequality (sec^(-1)x)^(2)-7(sec^(-1)x)+12>=0 is

Check whether pairs of function are identical or not ? f(x) = sec (sec^(-1) x) & g(x) = cosec (cosec^(-1) x)

y= 5^(x).sec^(-1)2x Find dy/dx

If z=sec^(-1)(x+(1)/(x))+sec^(-1)(y+(1)/(y)) where xy<0, then the possible value of z is (are)

f(x)=[x tan^(-1)x+sec^(-1)((1)/(x)),x in(-1,1)-{0} and (pi)/(2), if x=0, then f'(0) is

lim_(x rarr oo)sec^(-1)((x)/(x+1)) is equal to:

underset( x rarroo ) ("lim") sec^(-1) ((x)/( x+1)) =