Home
Class 12
MATHS
(1)/(logx)-(1)/((log x)^(2))...

`(1)/(logx)-(1)/((log x)^(2))`

Text Solution

AI Generated Solution

To solve the integral \[ \int \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) \, dx, \] we can break it down into two separate integrals: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Theory Questions|6 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

Integrate the following w.r.t.x. (1)/(x[6(logx)^(2)+7(log x)+2])

int(log(x//e))/((logx)^(2))dx=

log x-(1)/(2)log(x-(1)/(2))=log(x+(1)/(2))-(1)/(2)log(x+(1)/(8))