Home
Class 12
MATHS
If y = x^(2). e^(xy) then derivative of...

If `y = x^(2). e^(xy)` then derivative of y is

A

`- (y)/(x) ((2 + xy))/((1 - xy))`

B

`(y)/(x) ((2+ xy)/(1 - xy))`

C

`(x(2 + xy))/(y(1-xy))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^2 e^{xy} \), we will use the product rule and implicit differentiation. Here’s the step-by-step solution: ### Step 1: Identify the components The function \( y \) can be expressed as a product of two functions: - \( u = x^2 \) - \( v = e^{xy} \) ### Step 2: Apply the product rule The product rule states that if \( y = uv \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step 3: Differentiate \( u \) and \( v \) 1. Differentiate \( u = x^2 \): \[ \frac{du}{dx} = 2x \] 2. Differentiate \( v = e^{xy} \) using the chain rule: - Let \( z = xy \), then \( v = e^z \). - The derivative of \( v \) is: \[ \frac{dv}{dx} = e^{xy} \cdot \frac{d(xy)}{dx} \] - Now, apply the product rule to \( xy \): \[ \frac{d(xy)}{dx} = x \frac{dy}{dx} + y \] - Therefore, \[ \frac{dv}{dx} = e^{xy} (x \frac{dy}{dx} + y) \] ### Step 4: Substitute into the product rule formula Now substitute \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) back into the product rule: \[ \frac{dy}{dx} = x^2 \cdot e^{xy} (x \frac{dy}{dx} + y) + e^{xy} \cdot 2x \] ### Step 5: Simplify the equation Factor out \( e^{xy} \): \[ \frac{dy}{dx} = e^{xy} \left( x^2 (x \frac{dy}{dx} + y) + 2x \right) \] This simplifies to: \[ \frac{dy}{dx} = e^{xy} \left( x^3 \frac{dy}{dx} + x^2 y + 2x \right) \] ### Step 6: Isolate \( \frac{dy}{dx} \) Rearranging gives: \[ \frac{dy}{dx} - e^{xy} x^3 \frac{dy}{dx} = e^{xy} (x^2 y + 2x) \] Factor out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} (1 - e^{xy} x^3) = e^{xy} (x^2 y + 2x) \] Thus, \[ \frac{dy}{dx} = \frac{e^{xy} (x^2 y + 2x)}{1 - e^{xy} x^3} \] ### Step 7: Substitute \( e^{xy} \) Since \( e^{xy} = \frac{y}{x^2} \), substitute this into the equation: \[ \frac{dy}{dx} = \frac{\frac{y}{x^2} (x^2 y + 2x)}{1 - \frac{y}{x^2} x^3} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y (x^2 y + 2x)}{x^2 - y x} \] ### Final Answer Thus, the derivative of \( y \) is: \[ \frac{dy}{dx} = \frac{y (x^2 y + 2x)}{x^2 - y x} \]

To find the derivative of the function \( y = x^2 e^{xy} \), we will use the product rule and implicit differentiation. Here’s the step-by-step solution: ### Step 1: Identify the components The function \( y \) can be expressed as a product of two functions: - \( u = x^2 \) - \( v = e^{xy} \) ### Step 2: Apply the product rule ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

find the derivative of y=e^(sin sqrt(x))

find the derivative of y=e^(x)log_(e)x

If xy = 6 and x ^(2) y + xy ^(2) + x + y = 63, then the value of x ^(2) + y ^(2) is

If xy = 6 and x^(2) y + xy^(2) + x+y =63 , then the value of x^(2) +y^(2) is

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If x + y = 10 and xy = 16 , then the values of x^2 - xy + y^2 and x^2 + x y + y^2 are

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)
  1. If sec^(-1) ((1 + x)/(1-y)) = a , " then " (dy)/(dx) is

    Text Solution

    |

  2. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  3. If x^(4) + y^(4) = 3xy, "then " (dy)/(dx) is equal to

    Text Solution

    |

  4. If x = (y)/(sin y), then (dy)/(dx)

    Text Solution

    |

  5. If y = x^(2). e^(xy) then derivative of y is

    Text Solution

    |

  6. If xsqrt(1+y)+ysqrt(1+x)=0, for, -1<x<1,prove that (dy)/(dx)=-1/((1+x)...

    Text Solution

    |

  7. यदि cosy=x cos(a+y), तथा cos a ne +-1, तो सिध्य कीजिये कि (dy)/(dx)=(c...

    Text Solution

    |

  8. If 3 sin (xy) + 4 cos (xy) = 5 , " then " (dy)/(dx) is equal to

    Text Solution

    |

  9. If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

    Text Solution

    |

  10. If sin(a+y)+sina.cos(a+y)=0. Prove that : (dy)/(dx)=(sin^2(a+y)/(sina...

    Text Solution

    |

  11. Let y be an implicit function of x defined by x^(2x)-2x^xcot y-1=0. ...

    Text Solution

    |

  12. If 2^x+2^y=2^(x+y), then (dy)/(dx) is equal to

    Text Solution

    |

  13. If x^(2//3) + y^(2//3) = a^(2//3) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  14. If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

    Text Solution

    |

  15. If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

    Text Solution

    |

  16. If x=asec^3thetaa n dy=atan^3theta,fin d(dy)/(dx)a ttheta=pi/3dot

    Text Solution

    |

  17. If x=a(cost+(logtan)1/2), y=asin t, then dy/dx is equal to

    Text Solution

    |

  18. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  19. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  20. If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

    Text Solution

    |