Home
Class 12
MATHS
Let y be an implicit function of x def...

Let `y` be an implicit function of `x` defined by `x^(2x)-2x^xcot y-1=0.` Then `y '(1)` equals:

A

-1

B

1

C

log 2

D

- log 2

Text Solution

Verified by Experts

The correct Answer is:
A

` x^(2x) - 2x^(X) cot y - 1 = 0 `
At ` x = 1 " " 1 - 2 cot y - 1 = 0 `
` rArr cot y = 0 rArr y = (pi)/(2)`
On differenting both sides of E.q (i), w.r.t.x, we get
`2x^(2x) (1 + log x) -2[ x^(x) (- "cosec"^(2) y)(dy)/(dx)+ cot y , x^(x) (1 + log x)] = 0 `
` because "If " 4 = x^(2x) , " then log 4" = 2 x log x `
`rArr (1 du)/(4dx) = 2 [ 1 + log x] rArr (du)/(dx) = 2x^(2x) (1 + log x)`
Similarly , ` (d)/(dx) (x^(x)) = x^(x) ( + log x)`
At `(1 , (pi)/(2)) , " "2 (1 + log1) - 2(1(-1)(dy)/(dx))_(((1,(pi)/(2))))+ 0 )=0 `
`rArr 2 + 2((dy)/(dx))_((1","(pi)/(2)))=0`
`rArr ((dy)/(dx))_((1","(pi)/(2)))=-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

Let y be an implicit function of x defined by x^(2x)-2x^(x)coty-1=0. Then y'(1) equals: 1 b.log2 c.-log2d.-1

Let y be an implicit function of x defined by x^2x ""2x^xcoty""""1""=""0 . Then y (1) equals (1) 1 (2) 1 (3) log""2 (4) ""log2

at x 1 is Let y be an implicit function of x defined by x^2 r +2 x+ cot y -1= 0 then (B) 1 (D) None of these (C) -1

Let g:[1,3]rarr Y be a function defined as g(x)=In(x^(2)+3x+1). Then

Find y 'x for the following implicit function (a) y=x +arc tan y (b) x^(2)+5xy+y^(2)-2x+y-6=0 find y'' at the point (1,1)

Let a function y=y(x) be defined parametrically by x=2t-|t|y=t^(2)+t|t| then y'(x),x>0

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)
  1. If sec^(-1) ((1 + x)/(1-y)) = a , " then " (dy)/(dx) is

    Text Solution

    |

  2. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  3. If x^(4) + y^(4) = 3xy, "then " (dy)/(dx) is equal to

    Text Solution

    |

  4. If x = (y)/(sin y), then (dy)/(dx)

    Text Solution

    |

  5. If y = x^(2). e^(xy) then derivative of y is

    Text Solution

    |

  6. If xsqrt(1+y)+ysqrt(1+x)=0, for, -1<x<1,prove that (dy)/(dx)=-1/((1+x)...

    Text Solution

    |

  7. यदि cosy=x cos(a+y), तथा cos a ne +-1, तो सिध्य कीजिये कि (dy)/(dx)=(c...

    Text Solution

    |

  8. If 3 sin (xy) + 4 cos (xy) = 5 , " then " (dy)/(dx) is equal to

    Text Solution

    |

  9. If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

    Text Solution

    |

  10. If sin(a+y)+sina.cos(a+y)=0. Prove that : (dy)/(dx)=(sin^2(a+y)/(sina...

    Text Solution

    |

  11. Let y be an implicit function of x defined by x^(2x)-2x^xcot y-1=0. ...

    Text Solution

    |

  12. If 2^x+2^y=2^(x+y), then (dy)/(dx) is equal to

    Text Solution

    |

  13. If x^(2//3) + y^(2//3) = a^(2//3) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  14. If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

    Text Solution

    |

  15. If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

    Text Solution

    |

  16. If x=asec^3thetaa n dy=atan^3theta,fin d(dy)/(dx)a ttheta=pi/3dot

    Text Solution

    |

  17. If x=a(cost+(logtan)1/2), y=asin t, then dy/dx is equal to

    Text Solution

    |

  18. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  19. If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2, then x^3y(dy)/(dx)=

    Text Solution

    |

  20. If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

    Text Solution

    |