Home
Class 12
MATHS
Statement-1: int(0)^(npi+v)|sin x|dx=2n+...

Statement-1: `int_(0)^(npi+v)|sin x|dx=2n+1-cos v` where `n in N` and `0 le v lt pi`.
Stetement-2: If f(x) is a periodic function with period T, then
(i) `int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx`, where `n in N`
and (ii) `int_(nT)^(nt+a) f(x)dx=int_(0)^(a) f(x) dx`, where `n in N`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{0}^{n\pi + v} |\sin x| \, dx \) and show that it equals \( 2n + 1 - \cos v \) for \( n \in \mathbb{N} \) and \( 0 \leq v < \pi \). ### Step-by-Step Solution 1. **Understanding the Integral**: The function \( |\sin x| \) is periodic with a period of \( 2\pi \). We can break the integral into two parts: \[ \int_{0}^{n\pi + v} |\sin x| \, dx = \int_{0}^{n\pi} |\sin x| \, dx + \int_{n\pi}^{n\pi + v} |\sin x| \, dx \] 2. **Evaluating the First Integral**: For \( n\pi \), we can observe that the integral from \( 0 \) to \( n\pi \) consists of \( n \) full periods of \( |\sin x| \): \[ \int_{0}^{n\pi} |\sin x| \, dx = n \int_{0}^{\pi} |\sin x| \, dx \] The integral \( \int_{0}^{\pi} |\sin x| \, dx \) can be calculated as follows: \[ \int_{0}^{\pi} \sin x \, dx = [-\cos x]_{0}^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2 \] Thus, \[ \int_{0}^{n\pi} |\sin x| \, dx = n \cdot 2 = 2n \] 3. **Evaluating the Second Integral**: Now, we evaluate the second part: \[ \int_{n\pi}^{n\pi + v} |\sin x| \, dx \] Since \( n\pi \) is an integer multiple of \( \pi \), we have: \[ |\sin(n\pi + x)| = |\sin x| \quad \text{for } 0 \leq x < v \] Therefore, \[ \int_{n\pi}^{n\pi + v} |\sin x| \, dx = \int_{0}^{v} |\sin x| \, dx = \int_{0}^{v} \sin x \, dx \] Calculating this integral: \[ \int_{0}^{v} \sin x \, dx = [-\cos x]_{0}^{v} = -\cos(v) - (-\cos(0)) = 1 - \cos(v) \] 4. **Combining the Results**: Now we combine both parts: \[ \int_{0}^{n\pi + v} |\sin x| \, dx = 2n + (1 - \cos v) = 2n + 1 - \cos v \] 5. **Conclusion**: We have shown that: \[ \int_{0}^{n\pi + v} |\sin x| \, dx = 2n + 1 - \cos v \] Hence, Statement-1 is true.

To solve the problem, we need to evaluate the integral \( \int_{0}^{n\pi + v} |\sin x| \, dx \) and show that it equals \( 2n + 1 - \cos v \) for \( n \in \mathbb{N} \) and \( 0 \leq v < \pi \). ### Step-by-Step Solution 1. **Understanding the Integral**: The function \( |\sin x| \) is periodic with a period of \( 2\pi \). We can break the integral into two parts: \[ \int_{0}^{n\pi + v} |\sin x| \, dx = \int_{0}^{n\pi} |\sin x| \, dx + \int_{n\pi}^{n\pi + v} |\sin x| \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Property 12:int_(a)^(a+nT)f(x)dx=n int_(0)^(T)f(x)dx where T is period of f(x)

If f(a+x)=f(x), then prove that int_(a)^(na)f(x)dx=(n-1)int_(0)^(a)f(x)dx where a>0 and n in N.

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

Show that int_(0)^(n pi+v)|sin x|dx=2n+1-cos v, where n is a positive integer and ,0<=v

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =