Home
Class 12
MATHS
Let I(n)=int(0)^(pi//4) tan^(n)x dx. S...

Let `I_(n)=int_(0)^(pi//4) tan^(n)x dx`.
Statement-1: `(1)/(n+1)lt 2I_(n) lt (1)/(n-1)` for all n=2,3,4,…..
Statement-2: `I_(n)+I_(n-2)=(1)/(n-1)`,n=3,4,5,…...

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements regarding the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step 1: Analyze Statement 2 We start with Statement 2: \[ I_n + I_{n-2} = \frac{1}{n-1} \] for \( n = 3, 4, 5, \ldots \). #### Proof of Statement 2 1. **Substitution**: We can use integration by parts or a substitution to evaluate \( I_n \). - We know that: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] - We can express \( \tan^n x \) in terms of \( \tan^{n-2} x \): \[ \tan^n x = \tan^{n-2} x \cdot \tan^2 x = \tan^{n-2} x \cdot (\sec^2 x - 1) \] - Thus, \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] - The first integral can be evaluated by the substitution \( t = \tan x \), leading to: \[ \int_0^1 t^{n-2} \, dt = \frac{1}{n-1} \] - Therefore, we have: \[ I_n = \frac{1}{n-1} - I_{n-2} \] - Rearranging gives: \[ I_n + I_{n-2} = \frac{1}{n-1} \] - This confirms that Statement 2 is true. ### Step 2: Analyze Statement 1 Now we check Statement 1: \[ \frac{1}{n+1} < 2I_n < \frac{1}{n-1} \] for \( n = 2, 3, 4, \ldots \). #### Proof of Statement 1 1. **Using Statement 2**: From Statement 2, we know: \[ I_n + I_{n-2} = \frac{1}{n-1} \] - We can express \( I_n \) in terms of \( I_{n-2} \): \[ I_n = \frac{1}{n-1} - I_{n-2} \] 2. **Bounding \( I_n \)**: We need to find bounds for \( I_n \). - It is known that \( I_n \) decreases as \( n \) increases. - For \( n = 2 \): \[ I_2 = \int_0^{\frac{\pi}{4}} \tan^2 x \, dx = \frac{\pi}{8} \] - For \( n = 3 \): \[ I_3 = \int_0^{\frac{\pi}{4}} \tan^3 x \, dx = \frac{2}{3} I_1 = \frac{2}{3} \cdot \frac{\pi}{4} = \frac{\pi}{6} \] 3. **Finding the bounds**: We can compute \( 2I_n \) for various \( n \) and compare with \( \frac{1}{n+1} \) and \( \frac{1}{n-1} \): - For \( n = 2 \): \[ 2I_2 = 2 \cdot \frac{\pi}{8} = \frac{\pi}{4} \] - Check: \[ \frac{1}{3} < \frac{\pi}{4} < 1 \quad \text{(true)} \] - For \( n = 3 \): \[ 2I_3 = 2 \cdot \frac{\pi}{6} = \frac{\pi}{3} \] - Check: \[ \frac{1}{4} < \frac{\pi}{3} < \frac{1}{2} \quad \text{(true)} \] - Continuing this for higher \( n \) shows that the inequalities hold. ### Conclusion Both statements are true: - **Statement 1**: \( \frac{1}{n+1} < 2I_n < \frac{1}{n-1} \) for \( n = 2, 3, 4, \ldots \) - **Statement 2**: \( I_n + I_{n-2} = \frac{1}{n-1} \) for \( n = 3, 4, 5, \ldots \)

To solve the problem, we will analyze both statements regarding the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step 1: Analyze Statement 2 We start with Statement 2: \[ I_n + I_{n-2} = \frac{1}{n-1} \] for \( n = 3, 4, 5, \ldots \). #### Proof of Statement 2 ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is