Home
Class 12
MATHS
Let n in N such that n gt 1. Statement...

Let `n in N` such that `n gt 1`.
Statement-1: `int_(0)^(oo) (1)/(1+x^(n))dx=int_(0)^(1) (1)/((1-x^(n))^(1//n))dx`
Statement-2: `int_a^b f(x)dx=int_(a)^(b) f(a+b-x)dx`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and verify their correctness step by step. ### Step 1: Analyze Statement 1 We need to evaluate the integral \( I_1 = \int_{0}^{\infty} \frac{1}{1+x^n} \, dx \). **Substitution:** Let \( x = \tan^{2}(\theta) \). Then, \( dx = 2 \tan(\theta) \sec^{2}(\theta) \, d\theta \). **Limits of Integration:** - When \( x = 0 \), \( \theta = 0 \). - When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). **Transforming the Integral:** \[ I_1 = \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\tan^{2}(\theta)} \cdot 2 \tan(\theta) \sec^{2}(\theta) \, d\theta \] Using the identity \( 1 + \tan^{2}(\theta) = \sec^{2}(\theta) \): \[ I_1 = \int_{0}^{\frac{\pi}{2}} \frac{2 \tan(\theta) \sec^{2}(\theta)}{\sec^{2}(\theta)} \, d\theta = 2 \int_{0}^{\frac{\pi}{2}} \tan(\theta) \, d\theta \] ### Step 2: Evaluate \( \int_{0}^{\frac{\pi}{2}} \tan(\theta) \, d\theta \) This integral can be evaluated as follows: \[ \int \tan(\theta) \, d\theta = -\ln|\cos(\theta)| + C \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \tan(\theta) \, d\theta = \left[-\ln|\cos(\theta)|\right]_{0}^{\frac{\pi}{2}} = \infty \] This means \( I_1 \) diverges. ### Step 3: Analyze Statement 2 Statement 2 states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] This is a well-known property of definite integrals, and it holds true for any continuous function \( f(x) \). ### Step 4: Conclusion - **Statement 1** is incorrect because the integral diverges. - **Statement 2** is correct as it is a fundamental property of definite integrals. Thus, the final conclusion is: - Statement 1: False - Statement 2: True

To solve the given problem, we need to analyze both statements and verify their correctness step by step. ### Step 1: Analyze Statement 1 We need to evaluate the integral \( I_1 = \int_{0}^{\infty} \frac{1}{1+x^n} \, dx \). **Substitution:** Let \( x = \tan^{2}(\theta) \). Then, \( dx = 2 \tan(\theta) \sec^{2}(\theta) \, d\theta \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x (1 -x)^(n) dx=?

int_(0)^(1)(1-x^(3))^(n)dx=

int_(0)^(1)(log(1)/(x))^(n-1)dx equals

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

If int_(0)^(b)(dx)/(1+x^(2))=int_(b)^( oo)(dx)/(1+x^(2)) , then b=

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

Evaluate : (i) int_(0)^(1)x(1-x)^(n)dx (ii) int_(0)^(1)x(1-x)^(3//2)dx