Home
Class 12
MATHS
Statement-1:int(0)^(1)(cos x)/(1+x^(2))d...

Statement-1:`int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1`
Statement-2: If f(x) and g(x) are continuous on [a,b], then
`int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x)` for some `c in (a,b)`.

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

Statement-2, being the statement of generalized mean value theorem, is true.
Using statement-2, these exists `c in(0,1)` such that `underset(0)overset(1)int (cosx)/(1+x^(2))dx=cos c underset(0)overset(1)int (1)/(1+x^(2))dx=(pi)/(4)cos c`
Clearly, `cos c gt cos 1` for all `c in (0,1)`
`rArr (pi)/(4)cos c gt (pi)/(4)cops 1`
`rArr underset(0)overset(1)int(cos x)/(1+x^(2))dx gt (pi)/(4)cos 1`
So, statement-1 is true. Also, statement-2 is a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If (d)/(dx)f(x)=g(x) for a le x le b then, int_(a)^(b) f(x) g(x) dx equals

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a