Home
Class 12
MATHS
Statement-1: int(0)^(sin^(2)x) sin^(-1...

Statement-1:
`int_(0)^(sin^(2)x) sin^(-1)sqrt(t dt)+int_(0)^(cos^(2)x) cos^(-1)sqrt(t dt)=(pi)/(4)` for all x.
Statement-2:`(d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-psi'(x)f(psi(x))`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
C

Statement-2, being the statement of Leibnitz's rule, is true.
Also, statement-1 is true (See illustration 8 on page 44.19). But, statement-2 is not a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

(d)/(dx) int_(2)^(x^(2)) (t -1) dt is equal to

(d)/(dx)(int_(f(x))^(g(x))phi(t)dt) is equal to

If f(x)=int_(0)^(x){f(t)}^(-1)dt and int_(0)^(1){f(t)}^(-1)=sqrt(2)

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4