Home
Class 12
MATHS
Statement-1: int(0)^(pi//2) (1)/(1+tan^(...

Statement-1: `int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4)`
Statement-2: `int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Step 1: Analyze Statement 1 We need to evaluate the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \] ### Step 2: Use the property of definite integrals We will use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In this case, we set \( a = \frac{\pi}{2} \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Simplify the integral Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot^3 x} \, dx \] ### Step 4: Rewrite the cotangent Recall that \( \cot x = \frac{1}{\tan x} \). Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} \, dx \] ### Step 5: Add the two expressions for I Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} \, dx \) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^3 x} + \frac{\tan^3 x}{\tan^3 x + 1} \right) \, dx \] ### Step 6: Simplify the integrand The integrand simplifies to: \[ \frac{1 + \tan^3 x}{1 + \tan^3 x} = 1 \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] ### Step 7: Solve for I Dividing both sides by 2 gives: \[ I = \frac{\pi}{4} \] ### Conclusion for Statement 1 Therefore, Statement 1 is true: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx = \frac{\pi}{4} \] ### Step 8: Analyze Statement 2 Statement 2 states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a + x) \, dx \] This statement is generally not true. The correct property is: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Conclusion for Statement 2 Thus, Statement 2 is false. ### Final Conclusion - Statement 1 is true. - Statement 2 is false.

To solve the given problem, we will analyze both statements step by step. ### Step 1: Analyze Statement 1 We need to evaluate the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

int_(0)^((pi)/(2))(1)/(1+tan x)dx

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi//4) (1)/(1+cos 2x)dx

int_(0)^((pi)/(2))(1)/(cot x+tan x)dx

int_(0)^( pi/8)(1)/(1+4x^(2))dx=?

Statement I int_((pi)/(6))^((pi)/(3))(1)/(1+tan^(3)x) is (pi)/(12) statement II int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx