Home
Class 12
MATHS
Let F(x)=int(a)^(x^(2)) cos sqrt(t)dt ...

Let F(x)`=int_(a)^(x^(2)) cos sqrt(t)dt`
Statement-1: F'(x)=cos x
Statement-2: If f(x)`=int_(a)^(x) phi(t) dt`, then f'(x)=`phi`(x).

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`F(x)=underset(1)overset(x^(2))int cos sqrt(t)dt`
`rArr F'(x)=underset(1)overset(x^(2))int 0 dt+(d)/(dx)(x^(2))cos x-(d)/(dx)(1)cos 1=2x cos x`
So, statement-1 is not true. Clearly, statement-2 is true.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)= int_(-1)^(x)|t|dt ,x>=-1 then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals