Home
Class 12
MATHS
I(n)=int(0)^(pi//4) tan^(n)x dx, where n...

`I_(n)=int_(0)^(pi//4) tan^(n)x dx`, where `n in N`
Statement-1: `int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12)`
Statement-2: `I_(n)+I_(n-2)=(1)/(n-1)`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`I_(n)-underset(0)overset(pi//4)int tan^(n)x dx`
`rArr I_(n-2)=underset(0)overset(pi//4)int tan^(n-2)x dx`
`I_(n)+I_(n-2)=underset(0)overset(pi//4)int(tan^(n)x+tan^(n-2)x)dx`
`rArr I_(n)+I_(n-2)=underset(0)overset(pi//4)int tan^(n-2)x sec^(2)x dx`
`rArr I_(n)+I_(n-2)=[(tan^(n-1))/(n-1)]_(0)^(pi//4)=(1)/(n-1)`
So, statement-2 is true.
Now,
`I_(n)+I_(n-2)=(1)/(n-1)`
`rArr I_(4)+I_(2)=(1)/(3)" "` [Replacing n by 4]
and, `I_(2)+I_(0)=1" "` [Replacing n by 2]
`rArr I_(4)+1-I_(0)=(1)/(3)rArr I_(4)+1-(pi)/(4)=(1)/(3)`
`rArr I_(4)=(pi)/(4)-(2)/(3)=(3pi-8)/(12)`
So, statement-1 is also true and statement-2 is a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 1|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=