Home
Class 12
MATHS
If f'(x)=x+(1)/(x), then the value of f(...

If `f'(x)=x+(1)/(x),` then the value of f(x) is

A

`x^(2)+log x+C`

B

`(x^(2))/(2)+log|x|+C`

C

`(x)/(2)+logx+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f'(x) = x + \frac{1}{x} \), we need to integrate \( f'(x) \). ### Step-by-Step Solution: 1. **Write down the derivative**: \[ f'(x) = x + \frac{1}{x} \] 2. **Integrate \( f'(x) \)**: \[ f(x) = \int f'(x) \, dx = \int \left( x + \frac{1}{x} \right) \, dx \] 3. **Split the integral**: \[ f(x) = \int x \, dx + \int \frac{1}{x} \, dx \] 4. **Calculate the first integral**: \[ \int x \, dx = \frac{x^2}{2} \] 5. **Calculate the second integral**: \[ \int \frac{1}{x} \, dx = \log |x| \] 6. **Combine the results**: \[ f(x) = \frac{x^2}{2} + \log |x| + C \] where \( C \) is the constant of integration. ### Final Answer: Thus, the value of \( f(x) \) is: \[ f(x) = \frac{x^2}{2} + \log |x| + C \]

To find the function \( f(x) \) given that \( f'(x) = x + \frac{1}{x} \), we need to integrate \( f'(x) \). ### Step-by-Step Solution: 1. **Write down the derivative**: \[ f'(x) = x + \frac{1}{x} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x - (1)/(x) , then the value of f(x) + f((1)/(x)) is :

If f(x)=(x(x-1))/(2), then the value of f(x+2) is-

If f(x)=x+(1)/(x) , then the value of f(x)-f((1)/(x)) is

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

1.3.If f(x)=x+(1)/(x) ,then value of f(x)+f(1/x) is

If f(x)=(x+1)/(x-1) then the value of f(f(f(x))) is :

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If x(x)=(x+1)/(x-1) , then the value of f(f(f(x))) is :

If f(x)=-x then the value of f(-1) is