Home
Class 12
MATHS
int(1/sqrt(9-25x^2)) dx...

`int(1/sqrt(9-25x^2))` dx

A

`sin^(-1)((5x)/(3))+C`

B

`(3)/(2)sin^(-1)((5x)/(3))+C`

C

`(1)/(5)sin^(-1)((5x)/(3))+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`int(dx)/(sqrt(9-25x^(2)))=int(dx)/(sqrt(25[((3)/(5))^(2)-x^(2)]))=(1)/(5)int(dx)/(sqrt([((3)/(5))^(2)-x^(2)]))`
`=(1)/(5)sin^(-1)((x)/(3//5))+C`
`=(1)/(5)sin^(-1)((5x)/(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(25-x^(2)))dx=

Evaluate: (i) int1/(sqrt((x-1)(x-2)))\ dx (ii) int1/(sqrt(9+8x-x^2))\ dx

int(x)/(sqrt(9-x^(2)))dx

int sqrt(9-x^2) dx

int(dx)/(sqrt(9-25x^(2)))

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int(x)/(sqrt(9+x^(2)))dx

int(x)/(sqrt(9-x^(4)))dx

"int(x^(2))/(sqrt(9-25x^(2)))dx