Home
Class 12
MATHS
If the primitive of (1)/(f(x)) is equal ...

If the primitive of `(1)/(f(x))` is equal to `log{f(x)}^(2)+C`, then f(x) is

A

`x+d`

B

`(x)/(2)+d`

C

`(x^(2))/(2)+d`

D

`x^(2)+d`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information: **Given:** The primitive (or integral) of \( \frac{1}{f(x)} \) is equal to \( \log{f(x)}^2 + C \). ### Step 1: Understand the given equation We are given that: \[ \int \frac{1}{f(x)} \, dx = \log{f(x)}^2 + C \] This implies that the derivative of \( \log{f(x)}^2 + C \) should equal \( \frac{1}{f(x)} \). ### Step 2: Differentiate the right-hand side Using the chain rule, we differentiate \( \log{f(x)}^2 \): \[ \frac{d}{dx}(\log{f(x)}^2) = \frac{d}{dx}(2\log{f(x)}) = 2 \cdot \frac{1}{f(x)} \cdot f'(x) \] Thus, we have: \[ \frac{1}{f(x)} = 2 \cdot \frac{f'(x)}{f(x)} \] ### Step 3: Rearranging the equation From the equation \( \frac{1}{f(x)} = 2 \cdot \frac{f'(x)}{f(x)} \), we can multiply both sides by \( f(x) \): \[ 1 = 2f'(x) \] ### Step 4: Solve for \( f'(x) \) From the equation \( 1 = 2f'(x) \), we can isolate \( f'(x) \): \[ f'(x) = \frac{1}{2} \] ### Step 5: Integrate to find \( f(x) \) Now we integrate \( f'(x) \) to find \( f(x) \): \[ f(x) = \int \frac{1}{2} \, dx = \frac{1}{2}x + C \] Where \( C \) is the constant of integration. ### Conclusion Thus, the function \( f(x) \) is: \[ f(x) = \frac{1}{2}x + C \]

To solve the problem step by step, we start with the given information: **Given:** The primitive (or integral) of \( \frac{1}{f(x)} \) is equal to \( \log{f(x)}^2 + C \). ### Step 1: Understand the given equation We are given that: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If the primitive of (1)/((e^(x)-1)^(2)) is f(x)-log g(x)+c then

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

If f(x)=log((1+x)/(1-x)) and then f((2x)/(1+x^(2))) is equal to {f(x)}^(2) (b) {f(x)}^(3)(c)2f(x)(d)3f(x)

Let f(x)=log(x+sqrt(x^(2)+1)), then f'(x) equals.

if f(x)=log_(2)((1-x)/(1+x)) then f((2x)/(1+x^(2))) is equal to (A) f(x) (B) 2f(x) (C) -2f(x) (D) (f(x))^(2)