Home
Class 12
MATHS
If (d(f(x)))/(dx)=(1)/(1+x^(2)), then ...

If `(d(f(x)))/(dx)=(1)/(1+x^(2))`, then `(d)/(dx){f(x^(3))} `is

A

`(3x)/(1+x^(3))`

B

`(3x^(2))/(1+x^(6))`

C

`(-6x^(5))/((1+x^(6))^(2))`

D

`(-6x^(5))/(1+x^(6))`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `(d)/(dx){f(x)}=(1)/(1+x^(2))`
On integrating both sides, we get
`f(x)=tan^(-1)x`
`therefore" "(d)/(dx)f(x^(3))=(d)/(dx)(tan^(-1)x^(3))`
`=(1)/(1+(x^(3))^(2)).3x^(2)=(3x^(2))/(1+x^(6))`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

int[(d)/(dx)f(x)]dx=

Let phi(x) be the inverse of the function f(x) and f'=(1)/(1+x^(5)), then (d)/(dx)phi(x) is

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

Statement 1: If differentiable function f(x) satisfies the relation 0AA x in R, and if f(x)+f(x-2)=0AA x in R, and if ((d)/(dx)f(x))_(x=a)=b, then ((d)/(dx)f(x))_(a+4000)=b Statement 2:f(x) is a periodic function with period 4.