Home
Class 12
MATHS
d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(...

`d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(x^4-1)=>a-2b=`

A

1

B

`-1`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

Given `(d)/(dx)[ a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)+1)`
On intergrating both sides, we get
`a tan^(-1)x+b log((x-1)/(x+1))=(1)/(2)int[(1)/(x^(2)-1)-(1)/(x^(2)+1)]dx`
`rArr" " a tan^(-1)x+b log((x-1)/(x+1))=(1)/(4)log((x-1)/(x+1))-(1)/(2)tan^(-1)x`
`rArr" "A=-(1)/(2), b=(1)/(4)`
`therefore" "a-2b=-(1)/(2)-2((1)/(4))=-1`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)-1)rArr a-2b=

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^(-1)((4x-4x^(3))/(1-6x^(2)+x^(4)))]=

(d)/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]=(1)/(2(1+x)sqrt(x)) (b) (3)/((1+x)sqrt(x))(2)/((1+x)sqrt(x)) (d) (3)/(2(1+x)sqrt(x))

(d)/(dx)[cot^-1((1+sqrt(1-x^(2)))/(x))]=

Prove that (d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these