Home
Class 12
MATHS
int"cosec"^(4)x dx is equal to...

`int"cosec"^(4)x dx ` is equal to

A

`cotx+(cot^(3))/(3)+C`

B

`tanx+(tan^(3)x)/(3)+C`

C

`-cotx-(cot^(3)x)/(3)+C`

D

`-tanx-(tan^(3)x)/(3)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \csc^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \csc^4 x \, dx \] We can express \( \csc^4 x \) as \( \csc^2 x \cdot \csc^2 x \): \[ \int \csc^4 x \, dx = \int \csc^2 x \cdot \csc^2 x \, dx \] ### Step 2: Use the Identity We know that \( \csc^2 x = 1 + \cot^2 x \). Therefore, we can rewrite the integral: \[ \int \csc^4 x \, dx = \int (1 + \cot^2 x) \csc^2 x \, dx \] ### Step 3: Distribute the Integral Now we can separate the integral: \[ \int \csc^4 x \, dx = \int \csc^2 x \, dx + \int \cot^2 x \csc^2 x \, dx \] ### Step 4: Integrate the First Part The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x \] ### Step 5: Integrate the Second Part For the second integral \( \int \cot^2 x \csc^2 x \, dx \), we can use the substitution \( u = \cot x \), which gives \( du = -\csc^2 x \, dx \). Thus, we have: \[ \int \cot^2 x \csc^2 x \, dx = -\int u^2 \, du \] Integrating \( u^2 \): \[ -\int u^2 \, du = -\frac{u^3}{3} = -\frac{\cot^3 x}{3} \] ### Step 6: Combine the Results Now we combine both parts of the integral: \[ \int \csc^4 x \, dx = -\cot x - \frac{\cot^3 x}{3} + C \] ### Final Answer Thus, the final result is: \[ \int \csc^4 x \, dx = -\cot x - \frac{\cot^3 x}{3} + C \] ---

To solve the integral \( \int \csc^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \csc^4 x \, dx \] We can express \( \csc^4 x \) as \( \csc^2 x \cdot \csc^2 x \): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

int " cosec"^(4) 2x dx

The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to

int sec^(4)x cosec^(2)x dx is equal to

int(1-cosx)cosec^(2)x dx is equal to

int sec^(8//9)x cosec^(10//9)x dx is equal to

int"cosec"^(2)(2x+5)dx