Home
Class 12
MATHS
int(1)/(x^(2)+4x+13)dx is equal to...

`int(1)/(x^(2)+4x+13)dx` is equal to

A

`log(x^(2)+4x13)+C`

B

`(1)/(3)tan^(-1)((x+2)/(3))+C`

C

`log(2x+4)+C`

D

`(2x+4)/((x^(2)+4x+13)^(2))+C`

Text Solution

Verified by Experts

The correct Answer is:
B

`int(dx)/(x^(2)+4x+13)=int(dx)/(x^(2)+4x+4+9)`
`=int(dx)/((x+2)^(2)+3^(2))=(1)/(3)tan^(-1)((x+2)/(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal to

int(x^(4))/(x^(2)+1)dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^(2)+2)/(x^(2)+4)dx is equal to

int(x dx)/(x^(2)+4x+5) is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(4x+1)/(2x^(2)+x+1)dx