Home
Class 12
MATHS
int{(logx-1)/(1+(logx)^(2))}^(2) dx is e...

`int{(logx-1)/(1+(logx)^(2))}^(2)` dx is equal to

A

`(x)/((logx)^(2)+1)+C`

B

`(xe^(x))/(1+x^(2))+C`

C

`(x)/(x^(2)+1)+C`

D

`(logx)/((logx)^(2)+1)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Let us assume a function `f(x)=(x)/((logx)^(2)+1)+C` from option (a).
`therefore" "(d)/(dx)((x)/((logx)^(2)+1)+C)`
`=((logx)^(2)+1-x(2logx.(1)/(x)))/([(logx)^(2)+1]^(2))`
`=((logx)^(2)+1-2logx)/([(logx)^(2)+1]^(2))`
`=((logx-1)^(2))/([(logx)^(2)+1]^(2))=[(logx-1)/(1+(logx)^(2))]^(2)`
Hence, this result is equal to the given integral.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e){((logx-1))/(1+(logx)^(2))}^(2) dx is equal to

int (log x)/(1+logx)^2 dx

int(logx-1)/(x)dx

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int_(1)^(x) (logx^(2))/x dx is equal to

int[(1)/(logx)-(1)/((logx)^(2))]dx=

int32x^(3)(logx)^(2) dx is equal ot

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

int(dx)/(xsqrt(1-(logx)^(2))=